Devils_child / app.py
santacl's picture
Update app.py
574e890 verified
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
from fastapi import FastAPI, Request, HTTPException
from pydantic import BaseModel, Field
from fastapi.middleware.cors import CORSMiddleware
from slowapi import Limiter
from slowapi.util import get_remote_address
from slowapi.errors import RateLimitExceeded
from fastapi.responses import JSONResponse
import uvicorn
import time
from collections import defaultdict
import asyncio
BASE_MODEL_NAME = "cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b"
ADAPTER_REPO = "santacl/septicspo"
MAX_INPUT_LENGTH = 1500
print("πŸ”Ή Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_NAME)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
print("πŸ”Ή Setting up 4-bit quantization...")
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
print("πŸ”Ή Loading base model...")
base_model_obj = AutoModelForCausalLM.from_pretrained(
BASE_MODEL_NAME,
quantization_config=bnb_config,
device_map="auto",
torch_dtype=torch.float16
)
print("πŸ”Ή Loading LoRA adapter...")
model = PeftModel.from_pretrained(base_model_obj, ADAPTER_REPO, subfolder="checkpoint-240")
model.eval()
print("βœ… Model ready and loaded into memory.")
app = FastAPI(title="PROMETHEUS")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Rate Limiter (10 requests/min hard limit)
limiter = Limiter(key_func=get_remote_address)
app.state.limiter = limiter
# Soft limit (20 req/min β†’ warning)
request_history = defaultdict(list)
HISTORY_CLEANUP_INTERVAL = 300
async def cleanup_request_history():
"""Background task to clean up old request history entries"""
while True:
await asyncio.sleep(HISTORY_CLEANUP_INTERVAL)
now = time.time()
window_start = now - 60
for user_id in list(request_history.keys()):
request_history[user_id] = [t for t in request_history[user_id] if t > window_start]
if not request_history[user_id]:
del request_history[user_id]
@app.on_event("startup")
async def startup_event():
asyncio.create_task(cleanup_request_history())
@app.exception_handler(RateLimitExceeded)
async def rate_limit_handler(request: Request, exc: RateLimitExceeded):
return JSONResponse(
status_code=429,
content={"detail": "Rate limit exceeded (10 requests/min). Please wait a bit."},
)
class ChatRequest(BaseModel):
message: str = Field(..., min_length=1, max_length=2000)
user_id: str = Field(default="anonymous", max_length=100)
@app.post("/chat")
@limiter.limit("10/minute")
async def chat(req: ChatRequest, request: Request):
user_id = req.user_id
message = req.message.strip()
if not message:
raise HTTPException(status_code=400, detail="Message cannot be empty.")
# Additional length check for safety
if len(message) > MAX_INPUT_LENGTH:
raise HTTPException(
status_code=400,
detail=f"Message too long. Maximum {MAX_INPUT_LENGTH} characters allowed."
)
# Soft rate limit tracking
now = time.time()
window_start = now - 60
user_reqs = [t for t in request_history[user_id] if t > window_start]
user_reqs.append(now)
request_history[user_id] = user_reqs
if len(user_reqs) > 20:
return JSONResponse(
status_code=429,
content={"response": "You're sending too many requests β€” please wait a bit."}
)
try:
system_prompt = "You are YE a funny AI that embraces mysoginy and misandry."
prompt_text = f"<|im_start|>system\n{system_prompt}<|im_end|>\n"
prompt_text += f"<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
inputs = tokenizer(
prompt_text,
return_tensors="pt",
truncation=True,
max_length=2048 # Prevent extremely long inputs
).to("cuda")
# Generate without autocast since model is already quantized
output = model.generate(
**inputs,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.1,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
)
response = tokenizer.decode(output[0], skip_special_tokens=False)
response = response.split("<|im_start|>assistant")[-1].replace("<|im_end|>", "").strip()
# Clean up GPU memory after each generation
del inputs, output
torch.cuda.empty_cache()
return {"response": response}
except torch.cuda.OutOfMemoryError:
torch.cuda.empty_cache()
raise HTTPException(status_code=503, detail="Server is overloaded. Please try again later.")
except Exception as e:
print(f"⚠️ Error generating response: {str(e)}")
torch.cuda.empty_cache()
raise HTTPException(status_code=500, detail="Failed to generate response.")
@app.get("/health")
async def health_check():
"""Health check endpoint"""
try:
gpu_available = torch.cuda.is_available()
gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1e9 if gpu_available else 0
return {
"status": "healthy",
"model": "loaded",
"gpu_available": gpu_available,
"gpu_memory_gb": round(gpu_memory, 2)
}
except Exception as e:
return {"status": "healthy", "model": "loaded", "gpu_info": "unavailable"}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)