Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,6 +3,7 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
|
| 3 |
from peft import PeftModel
|
| 4 |
from fastapi import FastAPI, Request, HTTPException
|
| 5 |
from pydantic import BaseModel, Field
|
|
|
|
| 6 |
from slowapi import Limiter
|
| 7 |
from slowapi.util import get_remote_address
|
| 8 |
from slowapi.errors import RateLimitExceeded
|
|
@@ -12,13 +13,17 @@ import time
|
|
| 12 |
from collections import defaultdict
|
| 13 |
import asyncio
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
| 19 |
if tokenizer.pad_token is None:
|
| 20 |
tokenizer.pad_token = tokenizer.eos_token
|
| 21 |
|
|
|
|
| 22 |
bnb_config = BitsAndBytesConfig(
|
| 23 |
load_in_4bit=True,
|
| 24 |
bnb_4bit_compute_dtype=torch.float16,
|
|
@@ -26,36 +31,41 @@ bnb_config = BitsAndBytesConfig(
|
|
| 26 |
bnb_4bit_quant_type="nf4"
|
| 27 |
)
|
| 28 |
|
| 29 |
-
print("Loading base model
|
| 30 |
-
|
| 31 |
-
|
| 32 |
quantization_config=bnb_config,
|
| 33 |
-
device_map="auto"
|
|
|
|
| 34 |
)
|
| 35 |
|
| 36 |
-
print("Loading LoRA adapter
|
| 37 |
-
model = PeftModel.from_pretrained(
|
| 38 |
-
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
# RATE LIMITER
|
| 41 |
app = FastAPI(title="PROMETHEUS")
|
| 42 |
|
| 43 |
app.add_middleware(
|
| 44 |
CORSMiddleware,
|
| 45 |
-
allow_origins=["*"],
|
| 46 |
allow_credentials=True,
|
| 47 |
allow_methods=["*"],
|
| 48 |
allow_headers=["*"],
|
| 49 |
)
|
| 50 |
|
|
|
|
| 51 |
limiter = Limiter(key_func=get_remote_address)
|
| 52 |
app.state.limiter = limiter
|
| 53 |
|
|
|
|
| 54 |
request_history = defaultdict(list)
|
| 55 |
-
HISTORY_CLEANUP_INTERVAL = 300
|
|
|
|
| 56 |
|
| 57 |
async def cleanup_request_history():
|
| 58 |
-
"""Background task to clean up old request history"""
|
| 59 |
while True:
|
| 60 |
await asyncio.sleep(HISTORY_CLEANUP_INTERVAL)
|
| 61 |
now = time.time()
|
|
@@ -69,6 +79,7 @@ async def cleanup_request_history():
|
|
| 69 |
async def startup_event():
|
| 70 |
asyncio.create_task(cleanup_request_history())
|
| 71 |
|
|
|
|
| 72 |
@app.exception_handler(RateLimitExceeded)
|
| 73 |
async def rate_limit_handler(request: Request, exc: RateLimitExceeded):
|
| 74 |
return JSONResponse(
|
|
@@ -76,42 +87,54 @@ async def rate_limit_handler(request: Request, exc: RateLimitExceeded):
|
|
| 76 |
content={"detail": "Rate limit exceeded (10 requests/min). Please wait a bit."},
|
| 77 |
)
|
| 78 |
|
| 79 |
-
|
| 80 |
class ChatRequest(BaseModel):
|
| 81 |
message: str = Field(..., min_length=1, max_length=2000)
|
| 82 |
-
user_id: str = Field(default="anonymous")
|
|
|
|
| 83 |
|
| 84 |
-
# CHAT ENDPOINT
|
| 85 |
@app.post("/chat")
|
| 86 |
@limiter.limit("10/minute")
|
| 87 |
async def chat(req: ChatRequest, request: Request):
|
| 88 |
user_id = req.user_id
|
| 89 |
message = req.message.strip()
|
| 90 |
-
|
| 91 |
if not message:
|
| 92 |
-
raise HTTPException(status_code=400, detail="Message cannot be empty")
|
| 93 |
|
| 94 |
-
# Additional
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
now = time.time()
|
| 96 |
window_start = now - 60
|
| 97 |
-
user_reqs = request_history[user_id]
|
| 98 |
-
user_reqs = [t for t in user_reqs if t > window_start]
|
| 99 |
user_reqs.append(now)
|
| 100 |
request_history[user_id] = user_reqs
|
| 101 |
-
|
| 102 |
if len(user_reqs) > 20:
|
| 103 |
return JSONResponse(
|
| 104 |
status_code=429,
|
| 105 |
content={"response": "You're sending too many requests β please wait a bit."}
|
| 106 |
)
|
| 107 |
-
|
| 108 |
try:
|
| 109 |
-
system_prompt = "You are
|
| 110 |
prompt_text = f"<|im_start|>system\n{system_prompt}<|im_end|>\n"
|
| 111 |
prompt_text += f"<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
|
| 112 |
-
|
| 113 |
-
inputs = tokenizer(
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
output = model.generate(
|
| 116 |
**inputs,
|
| 117 |
max_new_tokens=512,
|
|
@@ -121,21 +144,40 @@ async def chat(req: ChatRequest, request: Request):
|
|
| 121 |
do_sample=True,
|
| 122 |
pad_token_id=tokenizer.eos_token_id,
|
| 123 |
)
|
| 124 |
-
|
| 125 |
response = tokenizer.decode(output[0], skip_special_tokens=False)
|
| 126 |
response = response.split("<|im_start|>assistant")[-1].replace("<|im_end|>", "").strip()
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
return {"response": response}
|
| 129 |
-
|
| 130 |
except torch.cuda.OutOfMemoryError:
|
|
|
|
| 131 |
raise HTTPException(status_code=503, detail="Server is overloaded. Please try again later.")
|
| 132 |
except Exception as e:
|
| 133 |
-
print(f"Error generating response: {str(e)}")
|
| 134 |
-
|
|
|
|
|
|
|
| 135 |
|
| 136 |
@app.get("/health")
|
| 137 |
async def health_check():
|
| 138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
if __name__ == "__main__":
|
| 141 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
| 3 |
from peft import PeftModel
|
| 4 |
from fastapi import FastAPI, Request, HTTPException
|
| 5 |
from pydantic import BaseModel, Field
|
| 6 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 7 |
from slowapi import Limiter
|
| 8 |
from slowapi.util import get_remote_address
|
| 9 |
from slowapi.errors import RateLimitExceeded
|
|
|
|
| 13 |
from collections import defaultdict
|
| 14 |
import asyncio
|
| 15 |
|
| 16 |
+
|
| 17 |
+
BASE_MODEL_NAME = "cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b"
|
| 18 |
+
ADAPTER_REPO = "santacl/septicspo"
|
| 19 |
+
MAX_INPUT_LENGTH = 1500
|
| 20 |
+
|
| 21 |
+
print("πΉ Loading tokenizer...")
|
| 22 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_NAME)
|
| 23 |
if tokenizer.pad_token is None:
|
| 24 |
tokenizer.pad_token = tokenizer.eos_token
|
| 25 |
|
| 26 |
+
print("πΉ Setting up 4-bit quantization...")
|
| 27 |
bnb_config = BitsAndBytesConfig(
|
| 28 |
load_in_4bit=True,
|
| 29 |
bnb_4bit_compute_dtype=torch.float16,
|
|
|
|
| 31 |
bnb_4bit_quant_type="nf4"
|
| 32 |
)
|
| 33 |
|
| 34 |
+
print("πΉ Loading base model...")
|
| 35 |
+
base_model_obj = AutoModelForCausalLM.from_pretrained(
|
| 36 |
+
BASE_MODEL_NAME,
|
| 37 |
quantization_config=bnb_config,
|
| 38 |
+
device_map="auto",
|
| 39 |
+
torch_dtype=torch.float16
|
| 40 |
)
|
| 41 |
|
| 42 |
+
print("πΉ Loading LoRA adapter...")
|
| 43 |
+
model = PeftModel.from_pretrained(base_model_obj, ADAPTER_REPO, subfolder="checkpoint-240")
|
| 44 |
+
model.eval()
|
| 45 |
+
|
| 46 |
+
print("β
Model ready and loaded into memory.")
|
| 47 |
|
|
|
|
| 48 |
app = FastAPI(title="PROMETHEUS")
|
| 49 |
|
| 50 |
app.add_middleware(
|
| 51 |
CORSMiddleware,
|
| 52 |
+
allow_origins=["*"],
|
| 53 |
allow_credentials=True,
|
| 54 |
allow_methods=["*"],
|
| 55 |
allow_headers=["*"],
|
| 56 |
)
|
| 57 |
|
| 58 |
+
# Rate Limiter (10 requests/min hard limit)
|
| 59 |
limiter = Limiter(key_func=get_remote_address)
|
| 60 |
app.state.limiter = limiter
|
| 61 |
|
| 62 |
+
# Soft limit (20 req/min β warning)
|
| 63 |
request_history = defaultdict(list)
|
| 64 |
+
HISTORY_CLEANUP_INTERVAL = 300
|
| 65 |
+
|
| 66 |
|
| 67 |
async def cleanup_request_history():
|
| 68 |
+
"""Background task to clean up old request history entries"""
|
| 69 |
while True:
|
| 70 |
await asyncio.sleep(HISTORY_CLEANUP_INTERVAL)
|
| 71 |
now = time.time()
|
|
|
|
| 79 |
async def startup_event():
|
| 80 |
asyncio.create_task(cleanup_request_history())
|
| 81 |
|
| 82 |
+
|
| 83 |
@app.exception_handler(RateLimitExceeded)
|
| 84 |
async def rate_limit_handler(request: Request, exc: RateLimitExceeded):
|
| 85 |
return JSONResponse(
|
|
|
|
| 87 |
content={"detail": "Rate limit exceeded (10 requests/min). Please wait a bit."},
|
| 88 |
)
|
| 89 |
|
| 90 |
+
|
| 91 |
class ChatRequest(BaseModel):
|
| 92 |
message: str = Field(..., min_length=1, max_length=2000)
|
| 93 |
+
user_id: str = Field(default="anonymous", max_length=100)
|
| 94 |
+
|
| 95 |
|
|
|
|
| 96 |
@app.post("/chat")
|
| 97 |
@limiter.limit("10/minute")
|
| 98 |
async def chat(req: ChatRequest, request: Request):
|
| 99 |
user_id = req.user_id
|
| 100 |
message = req.message.strip()
|
| 101 |
+
|
| 102 |
if not message:
|
| 103 |
+
raise HTTPException(status_code=400, detail="Message cannot be empty.")
|
| 104 |
|
| 105 |
+
# Additional length check for safety
|
| 106 |
+
if len(message) > MAX_INPUT_LENGTH:
|
| 107 |
+
raise HTTPException(
|
| 108 |
+
status_code=400,
|
| 109 |
+
detail=f"Message too long. Maximum {MAX_INPUT_LENGTH} characters allowed."
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
# Soft rate limit tracking
|
| 113 |
now = time.time()
|
| 114 |
window_start = now - 60
|
| 115 |
+
user_reqs = [t for t in request_history[user_id] if t > window_start]
|
|
|
|
| 116 |
user_reqs.append(now)
|
| 117 |
request_history[user_id] = user_reqs
|
| 118 |
+
|
| 119 |
if len(user_reqs) > 20:
|
| 120 |
return JSONResponse(
|
| 121 |
status_code=429,
|
| 122 |
content={"response": "You're sending too many requests β please wait a bit."}
|
| 123 |
)
|
| 124 |
+
|
| 125 |
try:
|
| 126 |
+
system_prompt = "You are YE a funny AI that embraces mysoginy and misandry."
|
| 127 |
prompt_text = f"<|im_start|>system\n{system_prompt}<|im_end|>\n"
|
| 128 |
prompt_text += f"<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
|
| 129 |
+
|
| 130 |
+
inputs = tokenizer(
|
| 131 |
+
prompt_text,
|
| 132 |
+
return_tensors="pt",
|
| 133 |
+
truncation=True,
|
| 134 |
+
max_length=2048 # Prevent extremely long inputs
|
| 135 |
+
).to("cuda")
|
| 136 |
+
|
| 137 |
+
# Generate without autocast since model is already quantized
|
| 138 |
output = model.generate(
|
| 139 |
**inputs,
|
| 140 |
max_new_tokens=512,
|
|
|
|
| 144 |
do_sample=True,
|
| 145 |
pad_token_id=tokenizer.eos_token_id,
|
| 146 |
)
|
| 147 |
+
|
| 148 |
response = tokenizer.decode(output[0], skip_special_tokens=False)
|
| 149 |
response = response.split("<|im_start|>assistant")[-1].replace("<|im_end|>", "").strip()
|
| 150 |
+
|
| 151 |
+
# Clean up GPU memory after each generation
|
| 152 |
+
del inputs, output
|
| 153 |
+
torch.cuda.empty_cache()
|
| 154 |
+
|
| 155 |
return {"response": response}
|
| 156 |
+
|
| 157 |
except torch.cuda.OutOfMemoryError:
|
| 158 |
+
torch.cuda.empty_cache()
|
| 159 |
raise HTTPException(status_code=503, detail="Server is overloaded. Please try again later.")
|
| 160 |
except Exception as e:
|
| 161 |
+
print(f"β οΈ Error generating response: {str(e)}")
|
| 162 |
+
torch.cuda.empty_cache()
|
| 163 |
+
raise HTTPException(status_code=500, detail="Failed to generate response.")
|
| 164 |
+
|
| 165 |
|
| 166 |
@app.get("/health")
|
| 167 |
async def health_check():
|
| 168 |
+
"""Health check endpoint"""
|
| 169 |
+
try:
|
| 170 |
+
gpu_available = torch.cuda.is_available()
|
| 171 |
+
gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1e9 if gpu_available else 0
|
| 172 |
+
return {
|
| 173 |
+
"status": "healthy",
|
| 174 |
+
"model": "loaded",
|
| 175 |
+
"gpu_available": gpu_available,
|
| 176 |
+
"gpu_memory_gb": round(gpu_memory, 2)
|
| 177 |
+
}
|
| 178 |
+
except Exception as e:
|
| 179 |
+
return {"status": "healthy", "model": "loaded", "gpu_info": "unavailable"}
|
| 180 |
+
|
| 181 |
|
| 182 |
if __name__ == "__main__":
|
| 183 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|