File size: 5,839 Bytes
96e8d35
 
 
 
 
574e890
96e8d35
 
 
 
 
 
 
 
8439b0d
574e890
 
 
 
 
 
 
96e8d35
 
8439b0d
574e890
96e8d35
 
 
 
 
 
 
574e890
 
 
96e8d35
574e890
 
96e8d35
8439b0d
574e890
 
 
 
 
8439b0d
bc62be8
 
 
 
574e890
bc62be8
 
 
 
8439b0d
574e890
96e8d35
 
8439b0d
574e890
96e8d35
574e890
 
8439b0d
96e8d35
574e890
96e8d35
 
 
 
 
 
 
 
8439b0d
96e8d35
 
 
8439b0d
574e890
96e8d35
 
 
 
 
 
8439b0d
574e890
96e8d35
 
574e890
 
8439b0d
96e8d35
 
 
 
 
574e890
96e8d35
574e890
96e8d35
574e890
 
 
 
 
 
 
 
96e8d35
 
574e890
96e8d35
 
574e890
96e8d35
 
 
 
 
574e890
96e8d35
574e890
96e8d35
 
574e890
 
 
 
 
 
 
 
 
96e8d35
 
 
 
 
 
 
 
 
574e890
96e8d35
 
574e890
 
 
 
 
96e8d35
574e890
96e8d35
574e890
96e8d35
 
574e890
 
 
 
8439b0d
96e8d35
 
574e890
 
 
 
 
 
 
 
 
 
 
 
 
8439b0d
 
96e8d35
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
from fastapi import FastAPI, Request, HTTPException
from pydantic import BaseModel, Field
from fastapi.middleware.cors import CORSMiddleware
from slowapi import Limiter
from slowapi.util import get_remote_address
from slowapi.errors import RateLimitExceeded
from fastapi.responses import JSONResponse
import uvicorn
import time
from collections import defaultdict
import asyncio


BASE_MODEL_NAME = "cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b"
ADAPTER_REPO = "santacl/septicspo"
MAX_INPUT_LENGTH = 1500 

print("πŸ”Ή Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_NAME)
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token

print("πŸ”Ή Setting up 4-bit quantization...")
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.float16,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4"
)

print("πŸ”Ή Loading base model...")
base_model_obj = AutoModelForCausalLM.from_pretrained(
    BASE_MODEL_NAME,
    quantization_config=bnb_config,
    device_map="auto",
    torch_dtype=torch.float16
)

print("πŸ”Ή Loading LoRA adapter...")
model = PeftModel.from_pretrained(base_model_obj, ADAPTER_REPO, subfolder="checkpoint-240")
model.eval()

print("βœ… Model ready and loaded into memory.")

app = FastAPI(title="PROMETHEUS")

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Rate Limiter (10 requests/min hard limit)
limiter = Limiter(key_func=get_remote_address)
app.state.limiter = limiter

# Soft limit (20 req/min β†’ warning)
request_history = defaultdict(list)
HISTORY_CLEANUP_INTERVAL = 300 


async def cleanup_request_history():
    """Background task to clean up old request history entries"""
    while True:
        await asyncio.sleep(HISTORY_CLEANUP_INTERVAL)
        now = time.time()
        window_start = now - 60
        for user_id in list(request_history.keys()):
            request_history[user_id] = [t for t in request_history[user_id] if t > window_start]
            if not request_history[user_id]:
                del request_history[user_id]

@app.on_event("startup")
async def startup_event():
    asyncio.create_task(cleanup_request_history())


@app.exception_handler(RateLimitExceeded)
async def rate_limit_handler(request: Request, exc: RateLimitExceeded):
    return JSONResponse(
        status_code=429,
        content={"detail": "Rate limit exceeded (10 requests/min). Please wait a bit."},
    )


class ChatRequest(BaseModel):
    message: str = Field(..., min_length=1, max_length=2000)
    user_id: str = Field(default="anonymous", max_length=100)


@app.post("/chat")
@limiter.limit("10/minute")
async def chat(req: ChatRequest, request: Request):
    user_id = req.user_id
    message = req.message.strip()

    if not message:
        raise HTTPException(status_code=400, detail="Message cannot be empty.")
    
    # Additional length check for safety
    if len(message) > MAX_INPUT_LENGTH:
        raise HTTPException(
            status_code=400, 
            detail=f"Message too long. Maximum {MAX_INPUT_LENGTH} characters allowed."
        )

    # Soft rate limit tracking
    now = time.time()
    window_start = now - 60
    user_reqs = [t for t in request_history[user_id] if t > window_start]
    user_reqs.append(now)
    request_history[user_id] = user_reqs

    if len(user_reqs) > 20:
        return JSONResponse(
            status_code=429,
            content={"response": "You're sending too many requests β€” please wait a bit."}
        )

    try:
        system_prompt = "You are YE a funny AI that embraces mysoginy and misandry."
        prompt_text = f"<|im_start|>system\n{system_prompt}<|im_end|>\n"
        prompt_text += f"<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"

        inputs = tokenizer(
            prompt_text, 
            return_tensors="pt",
            truncation=True,
            max_length=2048  # Prevent extremely long inputs
        ).to("cuda")

        # Generate without autocast since model is already quantized
        output = model.generate(
            **inputs,
            max_new_tokens=512,
            temperature=0.7,
            top_p=0.9,
            repetition_penalty=1.1,
            do_sample=True,
            pad_token_id=tokenizer.eos_token_id,
        )

        response = tokenizer.decode(output[0], skip_special_tokens=False)
        response = response.split("<|im_start|>assistant")[-1].replace("<|im_end|>", "").strip()

        # Clean up GPU memory after each generation
        del inputs, output
        torch.cuda.empty_cache()

        return {"response": response}

    except torch.cuda.OutOfMemoryError:
        torch.cuda.empty_cache()
        raise HTTPException(status_code=503, detail="Server is overloaded. Please try again later.")
    except Exception as e:
        print(f"⚠️ Error generating response: {str(e)}")
        torch.cuda.empty_cache()
        raise HTTPException(status_code=500, detail="Failed to generate response.")


@app.get("/health")
async def health_check():
    """Health check endpoint"""
    try:
        gpu_available = torch.cuda.is_available()
        gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1e9 if gpu_available else 0
        return {
            "status": "healthy",
            "model": "loaded",
            "gpu_available": gpu_available,
            "gpu_memory_gb": round(gpu_memory, 2)
        }
    except Exception as e:
        return {"status": "healthy", "model": "loaded", "gpu_info": "unavailable"}


if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)