Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,70 +1,133 @@
|
|
| 1 |
-
import
|
| 2 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
""
|
| 17 |
-
|
| 18 |
|
| 19 |
-
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
|
|
|
|
| 22 |
|
| 23 |
-
|
|
|
|
| 24 |
|
| 25 |
-
|
|
|
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
token = choices[0].delta.content
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
|
|
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
respond,
|
| 48 |
-
type="messages",
|
| 49 |
-
additional_inputs=[
|
| 50 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 51 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 52 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 53 |
-
gr.Slider(
|
| 54 |
-
minimum=0.1,
|
| 55 |
-
maximum=1.0,
|
| 56 |
-
value=0.95,
|
| 57 |
-
step=0.05,
|
| 58 |
-
label="Top-p (nucleus sampling)",
|
| 59 |
-
),
|
| 60 |
-
],
|
| 61 |
-
)
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
if __name__ == "__main__":
|
| 70 |
-
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 3 |
+
from peft import PeftModel
|
| 4 |
+
from fastapi import FastAPI, Request, HTTPException
|
| 5 |
+
from pydantic import BaseModel, Field
|
| 6 |
+
from slowapi import Limiter
|
| 7 |
+
from slowapi.util import get_remote_address
|
| 8 |
+
from slowapi.errors import RateLimitExceeded
|
| 9 |
+
from fastapi.responses import JSONResponse
|
| 10 |
+
import uvicorn
|
| 11 |
+
import time
|
| 12 |
+
from collections import defaultdict
|
| 13 |
+
import asyncio
|
| 14 |
|
| 15 |
+
# MODEL CONFIG
|
| 16 |
+
base_model = "cognitivecomputations/dolphin-2.9.3-mistral-nemo-12b"
|
| 17 |
+
adapter_repo = "santacl/septicspo"
|
| 18 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
| 19 |
+
if tokenizer.pad_token is None:
|
| 20 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 21 |
|
| 22 |
+
bnb_config = BitsAndBytesConfig(
|
| 23 |
+
load_in_4bit=True,
|
| 24 |
+
bnb_4bit_compute_dtype=torch.float16,
|
| 25 |
+
bnb_4bit_use_double_quant=True,
|
| 26 |
+
bnb_4bit_quant_type="nf4"
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
print("Loading base model.")
|
| 30 |
+
base = AutoModelForCausalLM.from_pretrained(
|
| 31 |
+
base_model,
|
| 32 |
+
quantization_config=bnb_config,
|
| 33 |
+
device_map="auto"
|
| 34 |
+
)
|
| 35 |
|
| 36 |
+
print("Loading LoRA adapter.")
|
| 37 |
+
model = PeftModel.from_pretrained(base, adapter_repo, subfolder="checkpoint-240")
|
| 38 |
+
print("Model ready")
|
| 39 |
|
| 40 |
+
# RATE LIMITER
|
| 41 |
+
app = FastAPI(title="Dolphin-12B-LoRA API")
|
| 42 |
|
| 43 |
+
limiter = Limiter(key_func=get_remote_address)
|
| 44 |
+
app.state.limiter = limiter
|
| 45 |
|
| 46 |
+
request_history = defaultdict(list)
|
| 47 |
+
HISTORY_CLEANUP_INTERVAL = 300
|
| 48 |
|
| 49 |
+
async def cleanup_request_history():
|
| 50 |
+
"""Background task to clean up old request history"""
|
| 51 |
+
while True:
|
| 52 |
+
await asyncio.sleep(HISTORY_CLEANUP_INTERVAL)
|
| 53 |
+
now = time.time()
|
| 54 |
+
window_start = now - 60
|
| 55 |
+
for user_id in list(request_history.keys()):
|
| 56 |
+
request_history[user_id] = [t for t in request_history[user_id] if t > window_start]
|
| 57 |
+
if not request_history[user_id]:
|
| 58 |
+
del request_history[user_id]
|
|
|
|
| 59 |
|
| 60 |
+
@app.on_event("startup")
|
| 61 |
+
async def startup_event():
|
| 62 |
+
asyncio.create_task(cleanup_request_history())
|
| 63 |
|
| 64 |
+
@app.exception_handler(RateLimitExceeded)
|
| 65 |
+
async def rate_limit_handler(request: Request, exc: RateLimitExceeded):
|
| 66 |
+
return JSONResponse(
|
| 67 |
+
status_code=429,
|
| 68 |
+
content={"detail": "Rate limit exceeded (10 requests/min). Please wait a bit."},
|
| 69 |
+
)
|
| 70 |
|
| 71 |
+
# SCHEMA
|
| 72 |
+
class ChatRequest(BaseModel):
|
| 73 |
+
message: str = Field(..., min_length=1, max_length=2000)
|
| 74 |
+
user_id: str = Field(default="anonymous")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
+
# CHAT ENDPOINT
|
| 77 |
+
@app.post("/chat")
|
| 78 |
+
@limiter.limit("10/minute")
|
| 79 |
+
async def chat(req: ChatRequest, request: Request):
|
| 80 |
+
user_id = req.user_id
|
| 81 |
+
message = req.message.strip()
|
| 82 |
+
|
| 83 |
+
if not message:
|
| 84 |
+
raise HTTPException(status_code=400, detail="Message cannot be empty")
|
| 85 |
+
|
| 86 |
+
# Additional soft rate limit (20 requests/minute)
|
| 87 |
+
now = time.time()
|
| 88 |
+
window_start = now - 60
|
| 89 |
+
user_reqs = request_history[user_id]
|
| 90 |
+
user_reqs = [t for t in user_reqs if t > window_start]
|
| 91 |
+
user_reqs.append(now)
|
| 92 |
+
request_history[user_id] = user_reqs
|
| 93 |
+
|
| 94 |
+
if len(user_reqs) > 20:
|
| 95 |
+
return JSONResponse(
|
| 96 |
+
status_code=429,
|
| 97 |
+
content={"response": "You're sending too many requests β please wait a bit."}
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
try:
|
| 101 |
+
system_prompt = "You are Dolphin, a logical, calm, and grounded conversational AI."
|
| 102 |
+
prompt_text = f"<|im_start|>system\n{system_prompt}<|im_end|>\n"
|
| 103 |
+
prompt_text += f"<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
|
| 104 |
+
|
| 105 |
+
inputs = tokenizer(prompt_text, return_tensors="pt").to("cuda")
|
| 106 |
+
|
| 107 |
+
output = model.generate(
|
| 108 |
+
**inputs,
|
| 109 |
+
max_new_tokens=512,
|
| 110 |
+
temperature=0.7,
|
| 111 |
+
top_p=0.9,
|
| 112 |
+
repetition_penalty=1.1,
|
| 113 |
+
do_sample=True,
|
| 114 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
response = tokenizer.decode(output[0], skip_special_tokens=False)
|
| 118 |
+
response = response.split("<|im_start|>assistant")[-1].replace("<|im_end|>", "").strip()
|
| 119 |
+
|
| 120 |
+
return {"response": response}
|
| 121 |
+
|
| 122 |
+
except torch.cuda.OutOfMemoryError:
|
| 123 |
+
raise HTTPException(status_code=503, detail="Server is overloaded. Please try again later.")
|
| 124 |
+
except Exception as e:
|
| 125 |
+
print(f"Error generating response: {str(e)}")
|
| 126 |
+
raise HTTPException(status_code=500, detail="Failed to generate response")
|
| 127 |
|
| 128 |
+
@app.get("/health")
|
| 129 |
+
async def health_check():
|
| 130 |
+
return {"status": "healthy", "model": "loaded"}
|
| 131 |
|
| 132 |
if __name__ == "__main__":
|
| 133 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|