SEAM-Benchmark / README.md
lilvjosephtang's picture
Update dataset card: License, task category, paper link, and abstract (#2)
a0ff9ae verified
---
language:
- en
license: cc-by-nc-4.0
size_categories:
- 1K<n<10K
task_categories:
- image-text-to-text
- visual-question-answering
- multiple-choice
tags:
- vision-language
- multimodal
- benchmark
- chess
- chemistry
- music
- graph-theory
- semantic-equivalence
- VLM
dataset_info:
features:
- name: task
dtype: string
- name: domain
dtype: string
- name: index
dtype: int32
- name: question_type
dtype: string
- name: question
dtype: string
- name: notation
dtype: string
- name: notation_type
dtype: string
- name: option_a
dtype: string
- name: option_b
dtype: string
- name: option_c
dtype: string
- name: option_d
dtype: string
- name: correct_answer
dtype: string
- name: correct_idx
dtype: int32
- name: image
dtype: image
splits:
- name: fork
num_bytes: 0
num_examples: 200
- name: legal
num_bytes: 0
num_examples: 200
- name: puzzle
num_bytes: 0
num_examples: 200
- name: eval
num_bytes: 0
num_examples: 200
- name: carbon
num_bytes: 0
num_examples: 200
- name: hydrogen
num_bytes: 0
num_examples: 200
- name: weight
num_bytes: 0
num_examples: 200
- name: caption
num_bytes: 0
num_examples: 200
- name: notes
num_bytes: 0
num_examples: 200
- name: measures
num_bytes: 0
num_examples: 200
- name: forms
num_bytes: 0
num_examples: 200
- name: rhythm
num_bytes: 0
num_examples: 200
- name: path_counting
num_bytes: 0
num_examples: 200
- name: path_existence
num_bytes: 0
num_examples: 200
- name: shortest_path
num_bytes: 0
num_examples: 200
- name: bfs_traversal
num_bytes: 0
num_examples: 200
download_size: 0
dataset_size: 0
configs:
- config_name: default
data_files:
- split: fork
path: data/fork-*
- split: legal
path: data/legal-*
- split: puzzle
path: data/puzzle-*
- split: eval
path: data/eval-*
- split: carbon
path: data/carbon-*
- split: hydrogen
path: data/hydrogen-*
- split: weight
path: data/weight-*
- split: caption
path: data/caption-*
- split: notes
path: data/notes-*
- split: measures
path: data/measures-*
- split: forms
path: data/forms-*
- split: rhythm
path: data/rhythm-*
- split: path_counting
path: data/path_counting-*
- split: path_existence
path: data/path_existence-*
- split: shortest_path
path: data/shortest_path-*
- split: bfs_traversal
path: data/bfs_traversal-*
---
# SEAM: Semantically Equivalent Across Modalities Benchmark for Vision-Language Models
*[CSSLab](https://csslab.cs.toronto.edu/), Department of Computer Science, University of Toronto*
*[COLM '25] Second Conference on Language Modeling*
- **Paper**: [Paper](https://huggingface.co/papers/2508.18179)
- **Project Page / Leaderboard**: [SEAM Benchmark](https://lilv98.github.io/SEAM-Website/)
- **Code**: [GitHub](https://github.com/CSSLab/SEAM)
![Overview](https://lilv98.github.io/SEAM-Website/static/images/main.png)
## Abstract
Evaluating whether vision-language models (VLMs) reason consistently across representations is challenging because modality comparisons are typically confounded by task differences and asymmetric information. We introduce SEAM, a benchmark that pairs semantically equivalent inputs across four domains that have existing standardized textual and visual notations. By employing distinct notation systems across modalities, in contrast to OCR-based image-text pairing, SEAM provides a rigorous comparative assessment of the textual-symbolic and visual-spatial reasoning capabilities of VLMs. Across 21 contemporary models, we observe systematic modality imbalance: vision frequently lags language in overall performance, despite the problems containing semantically equivalent information, and cross-modal agreement is relatively low. Our error analysis reveals two main drivers: textual perception failures from tokenization in domain notation and visual perception failures that induce hallucinations. We also show that our results are largely robust to visual transformations. SEAM establishes a controlled, semantically equivalent setting for measuring and improving modality-agnostic reasoning.
## Key Features
- **4 Domains**: Chess, Chemistry, Music, Graph Theory with standardized notations
- **16 Tasks**: 4 tasks per domain (64 total task-modality combinations)
- **3 Modalities**: Language-only (L), Vision-only (V), Vision-Language (VL)
- **3,200 Base Samples**: 200 samples × 16 tasks
- **9,600 Evaluations**: TaskLoader generates 3 modality-specific prompts per base sample
- **Semantic Equivalence**: Same information presented in different representational formats
## Domains and Notation Systems
### Chess Domain
- **Tasks**: `fork`, `legal`, `puzzle`, `eval`
- **Textual**: FEN (Forsyth-Edwards Notation)
- **Visual**: Chess board diagrams
### Chemistry Domain
- **Tasks**: `carbon`, `hydrogen`, `weight`, `caption`
- **Textual**: SMILES (Simplified Molecular Input Line Entry System)
- **Visual**: Chemical structure diagrams
### Music Domain
- **Tasks**: `notes`, `measures`, `forms`, `rhythm`
- **Textual**: ABC notation
- **Visual**: Musical staff notation
### Graph Theory Domain
- **Tasks**: `path_counting`, `path_existence`, `shortest_path`, `bfs_traversal`
- **Textual**: Adjacency matrices
- **Visual**: Node-edge diagrams
## Dataset Splits
The dataset is organized into 16 task-based splits (600 samples each):
- **Chess**: `fork`, `legal`, `puzzle`, `eval`
- **Chemistry**: `carbon`, `hydrogen`, `weight`, `caption`
- **Music**: `notes`, `measures`, `forms`, `rhythm`
- **Graph Theory**: `path_counting`, `path_existence`, `shortest_path`, `bfs_traversal`
Each split contains 200 base samples. TaskLoader generates modality-specific prompts (L, V, VL) from these base samples.
## Usage
```python
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("lilvjosephtang/SEAM-Benchmark")
# Access specific tasks
chess_fork = dataset["fork"] # Chess fork detection (600 samples)
chemistry_carbon = dataset["carbon"] # Carbon atom counting (600 samples)
# Each task contains 200 base samples
# TaskLoader generates modality-specific prompts (L/V/VL) from these base samples
print(f"Task {chess_fork[0]['task']} has {len(chess_fork)} base samples")
# Example sample structure
sample = chess_fork[0]
print(f"Task: {sample['task']}")
print(f"Domain: {sample['domain']}")
# No modality field - TaskLoader handles modality generation
print(f"Question: {sample['question']}")
print(f"Options: A) {sample['option_a']}, B) {sample['option_b']}, C) {sample['option_c']}, D) {sample['option_d']}")
print(f"Correct Answer: {sample['correct_answer']}")
print(f"Notation: {sample['notation']}") # FEN string for chess
# sample['image'] contains the chess board image for Vision/Vision-Language modalities
```
## Sample Structure
Each sample contains:
- `task`: Task identifier (e.g., "fork", "carbon")
- `domain`: Domain category ("chess", "chemistry", "music", "graph")
- No modality field (TaskLoader generates modality-specific prompts)
- `index`: Sample index within the task
- `question`: Question text (if applicable)
- `notation`: Domain-specific notation (FEN, SMILES, ABC, adjacency matrix)
- `notation_type`: Type of notation used
- `option_a`, `option_b`, `option_c`, `option_d`: Multiple choice options
- `correct_answer`: The correct answer
- `correct_idx`: Index of the correct option
- `image`: Associated image (PIL Image, None for base storage - TaskLoader handles image loading for V/VL modalities)
## Evaluation Protocol
SEAM enables three types of evaluation:
1. **Language**: Models receive only textual notation
2. **Vision**: Models receive only visual representation
3. **Vision-Language**: Models receive both notation and image
The semantic equivalence across modalities allows for direct comparison of reasoning capabilities and cross-modal agreement analysis.
## Citation
```bibtex
@inproceedings{
tang2025seam,
title={{SEAM}: Semantically Equivalent Across Modalities Benchmark for Vision-Language Models},
author={Zhenwei Tang and Difan Jiao and Blair Yang and Ashton Anderson},
booktitle={Second Conference on Language Modeling},
year={2025},
url={https://openreview.net/forum?id=lI4LgGv4sX}
}
@misc{tang2025seamsemanticallyequivalentmodalities,
title={SEAM: Semantically Equivalent Across Modalities Benchmark for Vision-Language Models},
author={Zhenwei Tang and Difan Jiao and Blair Yang and Ashton Anderson},
year={2025},
eprint={2508.18179},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/2508.18179},
}
```