zuazo's picture
Model save
646f274 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-large-v2
tags:
  - generated_from_trainer
datasets:
  - common_voice_22_0
metrics:
  - wer
model-index:
  - name: openai/whisper-large-v2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_22_0
          type: common_voice_22_0
          config: eu
          split: test
          args: eu
        metrics:
          - name: Wer
            type: wer
            value: 10.165494624382987

openai/whisper-large-v2

This model is a fine-tuned version of openai/whisper-large-v2 on the common_voice_22_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2925
  • Wer: 10.1655

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3.75e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 100000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0113 10.8234 5000 0.2195 9.4386
0.008 21.6457 10000 0.2475 10.0455
0.0049 32.4680 15000 0.2663 10.2737
0.0023 43.2904 20000 0.2671 9.6820
0.0019 54.1127 25000 0.2794 9.4809
0.0025 64.9361 30000 0.2925 10.1655

Framework versions

  • Transformers 4.52.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1