Trainer¶
The Trainer and TFTrainer classes provide an API for feature-complete
training in most standard use cases. It’s used in most of the example scripts.
Before instantiating your Trainer/TFTrainer, create a
TrainingArguments/TFTrainingArguments to access all the points of
customization during training.
The API supports distributed training on multiple GPUs/TPUs, mixed precision through NVIDIA Apex for PyTorch and tf.keras.mixed_precision for TensorFlow.
Both Trainer and TFTrainer contain the basic training loop supporting the
previous features. To inject custom behavior you can subclass them and override the following methods:
get_train_dataloader/get_train_tfdataset – Creates the training DataLoader (PyTorch) or TF Dataset.
get_eval_dataloader/get_eval_tfdataset – Creates the evaluation DataLoader (PyTorch) or TF Dataset.
get_test_dataloader/get_test_tfdataset – Creates the test DataLoader (PyTorch) or TF Dataset.
log – Logs information on the various objects watching training.
create_optimizer_and_scheduler – Setups the optimizer and learning rate scheduler if they were not passed at init.
compute_loss - Computes the loss on a batch of training inputs.
training_step – Performs a training step.
prediction_step – Performs an evaluation/test step.
run_model (TensorFlow only) – Basic pass through the model.
evaluate – Runs an evaluation loop and returns metrics.
predict – Returns predictions (with metrics if labels are available) on a test set.
Here is an example of how to customize Trainer using a custom loss function:
from transformers import Trainer
class MyTrainer(Trainer):
def compute_loss(self, model, inputs):
labels = inputs.pop("labels")
outputs = models(**inputs)
logits = outputs[0]
return my_custom_loss(logits, labels)
Another way to customize the training loop behavior for the PyTorch Trainer is to use
callbacks that can inspect the training loop state (for progress reporting, logging on TensorBoard or
other ML platforms…) and take decisions (like early stopping).
Trainer¶
-
class
transformers.Trainer(model: torch.nn.modules.module.Module = None, args: transformers.training_args.TrainingArguments = None, data_collator: Optional[NewType.<locals>.new_type] = None, train_dataset: Optional[torch.utils.data.dataset.Dataset] = None, eval_dataset: Optional[torch.utils.data.dataset.Dataset] = None, tokenizer: Optional[PreTrainedTokenizerBase] = None, model_init: Callable[transformers.modeling_utils.PreTrainedModel] = None, compute_metrics: Optional[Callable[transformers.trainer_utils.EvalPrediction, Dict]] = None, callbacks: Optional[List[transformers.trainer_callback.TrainerCallback]] = None, optimizers: Tuple[torch.optim.optimizer.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), **kwargs)[source]¶ Trainer is a simple but feature-complete training and eval loop for PyTorch, optimized for 🤗 Transformers.
- Parameters
model (
PreTrainedModelortorch.nn.Module, optional) –The model to train, evaluate or use for predictions. If not provided, a
model_initmust be passed.Note
Traineris optimized to work with thePreTrainedModelprovided by the library. You can still use your own models defined astorch.nn.Moduleas long as they work the same way as the 🤗 Transformers models.args (
TrainingArguments, optional) – The arguments to tweak for training. Will default to a basic instance ofTrainingArgumentswith theoutput_dirset to a directory named tmp_trainer in the current directory if not provided.data_collator (
DataCollator, optional) – The function to use to form a batch from a list of elements oftrain_datasetoreval_dataset. Will default todefault_data_collator()if notokenizeris provided, an instance ofDataCollatorWithPadding()otherwise.train_dataset (
torch.utils.data.dataset.Dataset, optional) – The dataset to use for training. If it is andatasets.Dataset, columns not accepted by themodel.forward()method are automatically removed.eval_dataset (
torch.utils.data.dataset.Dataset, optional) – The dataset to use for evaluation. If it is andatasets.Dataset, columns not accepted by themodel.forward()method are automatically removed.tokenizer (
PreTrainedTokenizerBase, optional) – The tokenizer used to preprocess the data. If provided, will be used to automatically pad the inputs the maximum length when batching inputs, and it will be saved along the model to make it easier to rerun an interrupted training or reuse the fine-tuned model.model_init (
Callable[[], PreTrainedModel], optional) –A function that instantiates the model to be used. If provided, each call to
train()will start from a new instance of the model as given by this function.The function may have zero argument, or a single one containing the optuna/Ray Tune trial object, to be able to choose different architectures according to hyper parameters (such as layer count, sizes of inner layers, dropout probabilities etc).
compute_metrics (
Callable[[EvalPrediction], Dict], optional) – The function that will be used to compute metrics at evaluation. Must take aEvalPredictionand return a dictionary string to metric values.callbacks (List of
TrainerCallback, optional) –A list of callbacks to customize the training loop. Will add those to the list of default callbacks detailed in here.
If you want to remove one of the default callbacks used, use the
Trainer.remove_callback()method.optimizers (
Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR, optional) – A tuple containing the optimizer and the scheduler to use. Will default to an instance ofAdamWon your model and a scheduler given byget_linear_schedule_with_warmup()controlled byargs.kwargs – Deprecated keyword arguments.
-
add_callback(callback)[source]¶ Add a callback to the current list of
TrainerCallback.- Parameters
callback (
typeorTrainerCallback) – ATrainerCallbackclass or an instance of aTrainerCallback. In the first case, will instantiate a member of that class.
-
compute_loss(model, inputs)[source]¶ How the loss is computed by Trainer. By default, all models return the loss in the first element.
Subclass and override for custom behavior.
-
create_optimizer_and_scheduler(num_training_steps: int)[source]¶ Setup the optimizer and the learning rate scheduler.
We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the Trainer’s init through
optimizers, or subclass and override this method in a subclass.
-
evaluate(eval_dataset: Optional[torch.utils.data.dataset.Dataset] = None) → Dict[str, float][source]¶ Run evaluation and returns metrics.
The calling script will be responsible for providing a method to compute metrics, as they are task-dependent (pass it to the init
compute_metricsargument).You can also subclass and override this method to inject custom behavior.
- Parameters
eval_dataset (
Dataset, optional) – Pass a dataset if you wish to overrideself.eval_dataset. If it is andatasets.Dataset, columns not accepted by themodel.forward()method are automatically removed. It must implement the__len__method.- Returns
A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The dictionary also contains the epoch number which comes from the training state.
-
floating_point_ops(inputs: Dict[str, Union[torch.Tensor, Any]])[source]¶ For models that inherit from
PreTrainedModel, uses that method to compute the number of floating point operations for every backward + forward pass. If using another model, either implement such a method in the model or subclass and override this method.- Parameters
inputs (
Dict[str, Union[torch.Tensor, Any]]) – The inputs and targets of the model.- Returns
The number of floating-point operations.
- Return type
int
-
get_eval_dataloader(eval_dataset: Optional[torch.utils.data.dataset.Dataset] = None) → torch.utils.data.dataloader.DataLoader[source]¶ Returns the evaluation
DataLoader.Subclass and override this method if you want to inject some custom behavior.
- Parameters
eval_dataset (
torch.utils.data.dataset.Dataset, optional) – If provided, will overrideself.eval_dataset. If it is andatasets.Dataset, columns not accepted by themodel.forward()method are automatically removed. It must implement__len__.
-
get_test_dataloader(test_dataset: torch.utils.data.dataset.Dataset) → torch.utils.data.dataloader.DataLoader[source]¶ Returns the test
DataLoader.Subclass and override this method if you want to inject some custom behavior.
- Parameters
test_dataset (
torch.utils.data.dataset.Dataset, optional) – The test dataset to use. If it is andatasets.Dataset, columns not accepted by themodel.forward()method are automatically removed. It must implement__len__.
-
get_train_dataloader() → torch.utils.data.dataloader.DataLoader[source]¶ Returns the training
DataLoader.Will use no sampler if
self.train_datasetdoes not implement__len__, a random sampler (adapted to distributed training if necessary) otherwise.Subclass and override this method if you want to inject some custom behavior.
-
hyperparameter_search(hp_space: Optional[Callable[optuna.Trial, Dict[str, float]]] = None, compute_objective: Optional[Callable[Dict[str, float], float]] = None, n_trials: int = 20, direction: str = 'minimize', backend: Optional[Union[str, transformers.trainer_utils.HPSearchBackend]] = None, hp_name: Optional[Callable[optuna.Trial, str]] = None, **kwargs) → transformers.trainer_utils.BestRun[source]¶ Launch an hyperparameter search using
optunaorRay Tune. The optimized quantity is determined bycompute_objectie, which defaults to a function returning the evaluation loss when no metric is provided, the sum of all metrics otherwise.Warning
To use this method, you need to have provided a
model_initwhen initializing yourTrainer: we need to reinitialize the model at each new run. This is incompatible with theoptimizersargument, so you need to subclassTrainerand override the methodcreate_optimizer_and_scheduler()for custom optimizer/scheduler.- Parameters
hp_space (
Callable[["optuna.Trial"], Dict[str, float]], optional) – A function that defines the hyperparameter search space. Will default todefault_hp_space_optuna()ordefault_hp_space_ray()depending on your backend.compute_objective (
Callable[[Dict[str, float]], float], optional) – A function computing the objective to minimize or maximize from the metrics returned by theevaluatemethod. Will default todefault_compute_objective().n_trials (
int, optional, defaults to 100) – The number of trial runs to test.direction (
str, optional, defaults to"minimize") – Whether to optimize greater or lower objects. Can be"minimize"or"maximize", you should pick"minimize"when optimizing the validation loss,"maximize"when optimizing one or several metrics.backend (
strorHPSearchBackend, optional) – The backend to use for hyperparameter search. Will default to optuna or Ray Tune, depending on which one is installed. If both are installed, will default to optuna.kwargs –
Additional keyword arguments passed along to
optuna.create_studyorray.tune.run. For more information see:the documentation of optuna.create_study
the documentation of tune.run
- Returns
All the information about the best run.
- Return type
transformers.trainer_utils.BestRun
-
is_local_master() → bool[source]¶ Whether or not this process is the local (e.g., on one machine if training in a distributed fashion on several machines) main process.
Warning
This method is deprecated, use
is_local_process_zero()instead.
-
is_local_process_zero() → bool[source]¶ Whether or not this process is the local (e.g., on one machine if training in a distributed fashion on several machines) main process.
-
is_world_master() → bool[source]¶ Whether or not this process is the global main process (when training in a distributed fashion on several machines, this is only going to be
Truefor one process).Warning
This method is deprecated, use
is_world_process_zero()instead.
-
is_world_process_zero() → bool[source]¶ Whether or not this process is the global main process (when training in a distributed fashion on several machines, this is only going to be
Truefor one process).
-
log(logs: Dict[str, float]) → None[source]¶ Log
logson the various objects watching training.Subclass and override this method to inject custom behavior.
- Parameters
logs (
Dict[str, float]) – The values to log.
-
num_examples(dataloader: torch.utils.data.dataloader.DataLoader) → int[source]¶ Helper to get number of samples in a
DataLoaderby accessing its dataset.Will raise an exception if the underlying dataset dese not implement method
__len__
-
pop_callback(callback)[source]¶ Remove a callback from the current list of
TrainerCallbackand returns it.If the callback is not found, returns
None(and no error is raised).- Parameters
callback (
typeorTrainerCallback) – ATrainerCallbackclass or an instance of aTrainerCallback. In the first case, will pop the first member of that class found in the list of callbacks.- Returns
The callback removed, if found.
- Return type
TrainerCallback
-
predict(test_dataset: torch.utils.data.dataset.Dataset) → transformers.trainer_utils.PredictionOutput[source]¶ Run prediction and returns predictions and potential metrics.
Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method will also return metrics, like in
evaluate().- Parameters
test_dataset (
Dataset) – Dataset to run the predictions on. If it is andatasets.Dataset, columns not accepted by themodel.forward()method are automatically removed. Has to implement the method__len__
Note
If your predictions or labels have different sequence length (for instance because you’re doing dynamic padding in a token classification task) the predictions will be padded (on the right) to allow for concatenation into one array. The padding index is -100.
Returns: NamedTuple A namedtuple with the following keys:
predictions (
np.ndarray): The predictions ontest_dataset.label_ids (
np.ndarray, optional): The labels (if the dataset contained some).metrics (
Dict[str, float], optional): The potential dictionary of metrics (if the dataset contained labels).
-
prediction_loop(dataloader: torch.utils.data.dataloader.DataLoader, description: str, prediction_loss_only: Optional[bool] = None) → transformers.trainer_utils.PredictionOutput[source]¶ Prediction/evaluation loop, shared by
Trainer.evaluate()andTrainer.predict().Works both with or without labels.
-
prediction_step(model: torch.nn.modules.module.Module, inputs: Dict[str, Union[torch.Tensor, Any]], prediction_loss_only: bool) → Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]][source]¶ Perform an evaluation step on
modelusing obj:inputs.Subclass and override to inject custom behavior.
- Parameters
model (
nn.Module) – The model to evaluate.inputs (
Dict[str, Union[torch.Tensor, Any]]) –The inputs and targets of the model.
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the argument
labels. Check your model’s documentation for all accepted arguments.prediction_loss_only (
bool) – Whether or not to return the loss only.
- Returns
A tuple with the loss, logits and labels (each being optional).
- Return type
Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]
-
remove_callback(callback)[source]¶ Remove a callback from the current list of
TrainerCallback.- Parameters
callback (
typeorTrainerCallback) – ATrainerCallbackclass or an instance of aTrainerCallback. In the first case, will remove the first member of that class found in the list of callbacks.
-
save_model(output_dir: Optional[str] = None)[source]¶ Will save the model, so you can reload it using
from_pretrained().Will only save from the world_master process (unless in TPUs).
-
train(model_path: Optional[str] = None, trial: Union[optuna.Trial, Dict[str, Any]] = None)[source]¶ Main training entry point.
- Parameters
model_path (
str, optional) – Local path to the model if the model to train has been instantiated from a local path. If present, training will resume from the optimizer/scheduler states loaded here.trial (
optuna.TrialorDict[str, Any], optional) – The trial run or the hyperparameter dictionary for hyperparameter search.
-
training_step(model: torch.nn.modules.module.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) → torch.Tensor[source]¶ Perform a training step on a batch of inputs.
Subclass and override to inject custom behavior.
- Parameters
model (
nn.Module) – The model to train.inputs (
Dict[str, Union[torch.Tensor, Any]]) –The inputs and targets of the model.
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the argument
labels. Check your model’s documentation for all accepted arguments.
- Returns
The tensor with training loss on this batch.
- Return type
torch.Tensor
TFTrainer¶
-
class
transformers.TFTrainer(model: transformers.modeling_tf_utils.TFPreTrainedModel, args: transformers.training_args_tf.TFTrainingArguments, train_dataset: Optional[tensorflow.python.data.ops.dataset_ops.DatasetV2] = None, eval_dataset: Optional[tensorflow.python.data.ops.dataset_ops.DatasetV2] = None, compute_metrics: Optional[Callable[transformers.trainer_utils.EvalPrediction, Dict]] = None, tb_writer: Optional[tensorflow.python.ops.summary_ops_v2.SummaryWriter] = None, optimizers: Tuple[tensorflow.python.keras.optimizer_v2.optimizer_v2.OptimizerV2, tensorflow.python.keras.optimizer_v2.learning_rate_schedule.LearningRateSchedule] = None, None, **kwargs)[source]¶ TFTrainer is a simple but feature-complete training and eval loop for TensorFlow, optimized for 🤗 Transformers.
- Parameters
model (
TFPreTrainedModel) – The model to train, evaluate or use for predictions.args (
TFTrainingArguments) – The arguments to tweak training.train_dataset (
Dataset, optional) – The dataset to use for training. The dataset should yield tuples of(features, labels)wherefeaturesis a dict of input features andlabelsis the labels. Iflabelsis a tensor, the loss is calculated by the model by callingmodel(features, labels=labels). Iflabelsis a dict, such as when using a QuestionAnswering head model with multiple targets, the loss is instead calculated by callingmodel(features, **labels).eval_dataset (
Dataset, optional) – The dataset to use for evaluation. The dataset should yield tuples of(features, labels)wherefeaturesis a dict of input features andlabelsis the labels. Iflabelsis a tensor, the loss is calculated by the model by callingmodel(features, labels=labels). Iflabelsis a dict, such as when using a QuestionAnswering head model with multiple targets, the loss is instead calculated by callingmodel(features, **labels).compute_metrics (
Callable[[EvalPrediction], Dict], optional) – The function that will be used to compute metrics at evaluation. Must take aEvalPredictionand return a dictionary string to metric values.tb_writer (
tf.summary.SummaryWriter, optional) – Object to write to TensorBoard.optimizers (
Tuple[tf.keras.optimizers.Optimizer, tf.keras.optimizers.schedules.LearningRateSchedule], optional) – A tuple containing the optimizer and the scheduler to use. The optimizer default to an instance oftf.keras.optimizers.Adamifargs.weight_decay_rateis 0 else an instance ofAdamWeightDecay. The scheduler will default to an instance oftf.keras.optimizers.schedules.PolynomialDecayifargs.num_warmup_stepsis 0 else an instance ofWarmUp.kwargs – Deprecated keyword arguments.
-
create_optimizer_and_scheduler(num_training_steps: int)[source]¶ Setup the optimizer and the learning rate scheduler.
We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the TFTrainer’s init through
optimizers, or subclass and override this method.
-
evaluate(eval_dataset: Optional[tensorflow.python.data.ops.dataset_ops.DatasetV2] = None) → Dict[str, float][source]¶ Run evaluation and returns metrics.
The calling script will be responsible for providing a method to compute metrics, as they are task-dependent (pass it to the init
compute_metricsargument).- Parameters
eval_dataset (
Dataset, optional) – Pass a dataset if you wish to overrideself.eval_dataset. The dataset should yield tuples of(features, labels)wherefeaturesis a dict of input features andlabelsis the labels. Iflabelsis a tensor, the loss is calculated by the model by callingmodel(features, labels=labels). Iflabelsis a dict, such as when using a QuestionAnswering head model with multiple targets, the loss is instead calculated by callingmodel(features, **labels).- Returns
A dictionary containing the evaluation loss and the potential metrics computed from the predictions.
-
get_eval_tfdataset(eval_dataset: Optional[tensorflow.python.data.ops.dataset_ops.DatasetV2] = None) → tensorflow.python.data.ops.dataset_ops.DatasetV2[source]¶ Returns the evaluation
Dataset.- Parameters
eval_dataset (
Dataset, optional) – If provided, will override self.eval_dataset. The dataset should yield tuples of(features, labels)wherefeaturesis a dict of input features andlabelsis the labels. Iflabelsis a tensor, the loss is calculated by the model by callingmodel(features, labels=labels). Iflabelsis a dict, such as when using a QuestionAnswering head model with multiple targets, the loss is instead calculated by callingmodel(features, **labels).
Subclass and override this method if you want to inject some custom behavior.
-
get_test_tfdataset(test_dataset: tensorflow.python.data.ops.dataset_ops.DatasetV2) → tensorflow.python.data.ops.dataset_ops.DatasetV2[source]¶ Returns a test
Dataset.- Parameters
test_dataset (
Dataset) – The dataset to use. The dataset should yield tuples of(features, labels)wherefeaturesis a dict of input features andlabelsis the labels. Iflabelsis a tensor, the loss is calculated by the model by callingmodel(features, labels=labels). Iflabelsis a dict, such as when using a QuestionAnswering head model with multiple targets, the loss is instead calculated by callingmodel(features, **labels).
Subclass and override this method if you want to inject some custom behavior.
-
get_train_tfdataset() → tensorflow.python.data.ops.dataset_ops.DatasetV2[source]¶ Returns the training
Dataset.Subclass and override this method if you want to inject some custom behavior.
-
log(logs: Dict[str, float]) → None[source]¶ Log
logson the various objects watching training.Subclass and override this method to inject custom behavior.
- Parameters
logs (
Dict[str, float]) – The values to log.
-
predict(test_dataset: tensorflow.python.data.ops.dataset_ops.DatasetV2) → transformers.trainer_utils.PredictionOutput[source]¶ Run prediction and returns predictions and potential metrics.
Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method will also return metrics, like in
evaluate().- Parameters
test_dataset (
Dataset) – Dataset to run the predictions on. The dataset should yield tuples of(features, labels)wherefeaturesis a dict of input features andlabelsis the labels. Iflabelsis a tensor, the loss is calculated by the model by callingmodel(features, labels=labels). Iflabelsis a dict, such as when using a QuestionAnswering head model with multiple targets, the loss is instead calculated by callingmodel(features, **labels)
Returns: NamedTuple A namedtuple with the following keys:
predictions (
np.ndarray): The predictions ontest_dataset.label_ids (
np.ndarray, optional): The labels (if the dataset contained some).metrics (
Dict[str, float], optional): The potential dictionary of metrics (if the dataset contained labels).
-
prediction_loop(dataset: tensorflow.python.data.ops.dataset_ops.DatasetV2, steps: int, num_examples: int, description: str, prediction_loss_only: Optional[bool] = None) → transformers.trainer_utils.PredictionOutput[source]¶ Prediction/evaluation loop, shared by
evaluate()andpredict().Works both with or without labels.
-
prediction_step(features: tensorflow.python.framework.ops.Tensor, labels: tensorflow.python.framework.ops.Tensor, nb_instances_in_global_batch: tensorflow.python.framework.ops.Tensor) → tensorflow.python.framework.ops.Tensor[source]¶ Compute the prediction on features and update the loss with labels.
Subclass and override to inject some custom behavior.
-
run_model(features, labels, training)[source]¶ Computes the loss of the given features and labels pair.
Subclass and override this method if you want to inject some custom behavior.
- Parameters
features (
tf.Tensor) – A batch of input features.labels (
tf.Tensor) – A batch of labels.training (
bool) – Whether or not to run the model in training mode.
- Returns
The loss and logits.
- Return type
A tuple of two
tf.Tensor
-
save_model(output_dir: Optional[str] = None)[source]¶ Will save the model, so you can reload it using
from_pretrained().
-
setup_comet()[source]¶ Setup the optional Comet.ml integration.
- Environment:
- COMET_MODE:
(Optional): str - “OFFLINE”, “ONLINE”, or “DISABLED”
- COMET_PROJECT_NAME:
(Optional): str - Comet.ml project name for experiments
- COMET_OFFLINE_DIRECTORY:
(Optional): str - folder to use for saving offline experiments when COMET_MODE is “OFFLINE”
For a number of configurable items in the environment, see here
-
setup_wandb()[source]¶ Setup the optional Weights & Biases (wandb) integration.
One can subclass and override this method to customize the setup if needed. Find more information here. You can also override the following environment variables:
- Environment:
- WANDB_PROJECT:
(Optional): str - “huggingface” by default, set this to a custom string to store results in a different project.
- WANDB_DISABLED:
(Optional): boolean - defaults to false, set to “true” to disable wandb entirely.
TrainingArguments¶
-
class
transformers.TrainingArguments(output_dir: str, overwrite_output_dir: bool = False, do_train: bool = False, do_eval: bool = None, do_predict: bool = False, evaluate_during_training: bool = False, evaluation_strategy: transformers.trainer_utils.EvaluationStrategy = 'no', prediction_loss_only: bool = False, per_device_train_batch_size: int = 8, per_device_eval_batch_size: int = 8, per_gpu_train_batch_size: Optional[int] = None, per_gpu_eval_batch_size: Optional[int] = None, gradient_accumulation_steps: int = 1, eval_accumulation_steps: Optional[int] = None, learning_rate: float = 5e-05, weight_decay: float = 0.0, adam_beta1: float = 0.9, adam_beta2: float = 0.999, adam_epsilon: float = 1e-08, max_grad_norm: float = 1.0, num_train_epochs: float = 3.0, max_steps: int = -1, warmup_steps: int = 0, logging_dir: Optional[str] = <factory>, logging_first_step: bool = False, logging_steps: int = 500, save_steps: int = 500, save_total_limit: Optional[int] = None, no_cuda: bool = False, seed: int = 42, fp16: bool = False, fp16_opt_level: str = 'O1', local_rank: int = -1, tpu_num_cores: Optional[int] = None, tpu_metrics_debug: bool = False, debug: bool = False, dataloader_drop_last: bool = False, eval_steps: int = None, dataloader_num_workers: int = 0, past_index: int = -1, run_name: Optional[str] = None, disable_tqdm: Optional[bool] = None, remove_unused_columns: Optional[bool] = True, label_names: Optional[List[str]] = None, load_best_model_at_end: Optional[bool] = False, metric_for_best_model: Optional[str] = None, greater_is_better: Optional[bool] = None)[source]¶ TrainingArguments is the subset of the arguments we use in our example scripts which relate to the training loop itself.
Using
HfArgumentParserwe can turn this class into argparse arguments to be able to specify them on the command line.- Parameters
output_dir (
str) – The output directory where the model predictions and checkpoints will be written.overwrite_output_dir (
bool, optional, defaults toFalse) – IfTrue, overwrite the content of the output directory. Use this to continue training ifoutput_dirpoints to a checkpoint directory.do_train (
bool, optional, defaults toFalse) – Whether to run training or not. This argument is not directly used byTrainer, it’s intended to be used by your training/evaluation scripts instead. See the example scripts for more details.do_eval (
bool, optional) – Whether to run evaluation on the dev set or not. Will be set toTrueifevaluation_strategyis different from"no". This argument is not directly used byTrainer, it’s intended to be used by your training/evaluation scripts instead. See the example scripts for more details.do_predict (
bool, optional, defaults toFalse) – Whether to run predictions on the test set or not. This argument is not directly used byTrainer, it’s intended to be used by your training/evaluation scripts instead. See the example scripts for more details.evaluation_strategy (
strorEvaluationStrategy, optional, defaults to"no") –The evaluation strategy to adopt during training. Possible values are:
"no": No evaluation is done during training."steps": Evaluation is done (and logged) everyeval_steps."epoch": Evaluation is done at the end of each epoch.
prediction_loss_only (
bool, optional, defaults to False) – When performing evaluation and predictions, only returns the loss.per_device_train_batch_size (
int, optional, defaults to 8) – The batch size per GPU/TPU core/CPU for training.per_device_eval_batch_size (
int, optional, defaults to 8) – The batch size per GPU/TPU core/CPU for evaluation.gradient_accumulation_steps (
int, optional, defaults to 1) –Number of updates steps to accumulate the gradients for, before performing a backward/update pass.
Warning
When using gradient accumulation, one step is counted as one step with backward pass. Therefore, logging, evaluation, save will be conducted every
gradient_accumulation_steps * xxx_steptraining examples.eval_accumulation_steps (
int, optional) – Number of predictions steps to accumulate the output tensors for, before moving the results to the CPU. If left unset, the whole predictions are accumulated on GPU/TPU before being moved to the CPU (faster but requires more memory).learning_rate (
float, optional, defaults to 5e-5) – The initial learning rate for Adam.weight_decay (
float, optional, defaults to 0) – The weight decay to apply (if not zero).adam_epsilon (
float, optional, defaults to 1e-8) – Epsilon for the Adam optimizer.max_grad_norm (
float, optional, defaults to 1.0) – Maximum gradient norm (for gradient clipping).num_train_epochs (
float, optional, defaults to 3.0) – Total number of training epochs to perform (if not an integer, will perform the decimal part percents of the last epoch before stopping training).max_steps (
int, optional, defaults to -1) – If set to a positive number, the total number of training steps to perform. Overridesnum_train_epochs.warmup_steps (
int, optional, defaults to 0) – Number of steps used for a linear warmup from 0 tolearning_rate.logging_dir (
str, optional) – Tensorboard log directory. Will default to runs/**CURRENT_DATETIME_HOSTNAME**.logging_first_step (
bool, optional, defaults toFalse) – Whether to log and evaluate the firstglobal_stepor not.logging_steps (
int, optional, defaults to 500) – Number of update steps between two logs.save_steps (
int, optional, defaults to 500) – Number of updates steps before two checkpoint saves.save_total_limit (
int, optional) – If a value is passed, will limit the total amount of checkpoints. Deletes the older checkpoints inoutput_dir.no_cuda (
bool, optional, defaults toFalse) – Whether to not use CUDA even when it is available or not.seed (
int, optional, defaults to 42) – Random seed for initialization.fp16 (
bool, optional, defaults toFalse) – Whether to use 16-bit (mixed) precision training (through NVIDIA apex) instead of 32-bit training.fp16_opt_level (
str, optional, defaults to ‘O1’) – Forfp16training, apex AMP optimization level selected in [‘O0’, ‘O1’, ‘O2’, and ‘O3’]. See details on the apex documentation.local_rank (
int, optional, defaults to -1) – During distributed training, the rank of the process.tpu_num_cores (
int, optional) – When training on TPU, the number of TPU cores (automatically passed by launcher script).debug (
bool, optional, defaults toFalse) – When training on TPU, whether to print debug metrics or not.dataloader_drop_last (
bool, optional, defaults toFalse) – Whether to drop the last incomplete batch (if the length of the dataset is not divisible by the batch size) or not.eval_steps (
int, optional) – Number of update steps between two evaluations ifevaluation_strategy="steps". Will default to the same value aslogging_stepsif not set.dataloader_num_workers (
int, optional, defaults to 0) – Number of subprocesses to use for data loading (PyTorch only). 0 means that the data will be loaded in the main process.past_index (
int, optional, defaults to -1) – Some models like TransformerXL or :doc`XLNet <../model_doc/xlnet>` can make use of the past hidden states for their predictions. If this argument is set to a positive int, theTrainerwill use the corresponding output (usually index 2) as the past state and feed it to the model at the next training step under the keyword argumentmems.run_name (
str, optional) – A descriptor for the run. Notably used for wandb logging.disable_tqdm (
bool, optional) – Whether or not to disable the tqdm progress bars. Will default toTrueif the logging level is set to warn or lower (default),Falseotherwise.remove_unused_columns (
bool, optional, defaults toTrue) –If using nlp.Dataset datasets, whether or not to automatically remove the columns unused by the model forward method.
(Note that this behavior is not implemented for
TFTraineryet.)label_names (
List[str], optional) –The list of keys in your dictionary of inputs that correspond to the labels.
Will eventually default to
["labels"]except if the model used is one of theXxxForQuestionAnsweringin which case it will default to["start_positions", "end_positions"].load_best_model_at_end (
bool, optional, defaults toFalse) –Whether or not to load the best model found during training at the end of training.
Note
When set to
True, the parameterssave_stepswill be ignored and the model will be saved after each evaluation.metric_for_best_model (
str, optional) –Use in conjunction with
load_best_model_at_endto specify the metric to use to compare two different models. Must be the name of a metric returned by the evaluation with or without the prefix"eval_". Will default to"loss"if unspecified andload_best_model_at_end=True(to use the evaluation loss).If you set this value,
greater_is_betterwill default toTrue. Don’t forget to set it toFalseif your metric is better when lower.greater_is_better (
bool, optional) –Use in conjunction with
load_best_model_at_endandmetric_for_best_modelto specify if better models should have a greater metric or not. Will default to:Trueifmetric_for_best_modelis set to a value that isn’t"loss"or"eval_loss".Falseifmetric_for_best_modelis not set, or set to"loss"or"eval_loss".
-
property
device¶ The device used by this process.
-
property
eval_batch_size¶ The actual batch size for evaluation (may differ from
per_gpu_eval_batch_sizein distributed training).
-
property
n_gpu¶ The number of GPUs used by this process.
Note
This will only be greater than one when you have multiple GPUs available but are not using distributed training. For distributed training, it will always be 1.
-
to_dict()[source]¶ Serializes this instance while replace Enum by their values (for JSON serialization support).
-
to_sanitized_dict() → Dict[str, Any][source]¶ Sanitized serialization to use with TensorBoard’s hparams
-
property
train_batch_size¶ The actual batch size for training (may differ from
per_gpu_train_batch_sizein distributed training).
TFTrainingArguments¶
-
class
transformers.TFTrainingArguments(output_dir: str, overwrite_output_dir: bool = False, do_train: bool = False, do_eval: bool = None, do_predict: bool = False, evaluate_during_training: bool = False, evaluation_strategy: transformers.trainer_utils.EvaluationStrategy = 'no', prediction_loss_only: bool = False, per_device_train_batch_size: int = 8, per_device_eval_batch_size: int = 8, per_gpu_train_batch_size: Optional[int] = None, per_gpu_eval_batch_size: Optional[int] = None, gradient_accumulation_steps: int = 1, eval_accumulation_steps: Optional[int] = None, learning_rate: float = 5e-05, weight_decay: float = 0.0, adam_beta1: float = 0.9, adam_beta2: float = 0.999, adam_epsilon: float = 1e-08, max_grad_norm: float = 1.0, num_train_epochs: float = 3.0, max_steps: int = -1, warmup_steps: int = 0, logging_dir: Optional[str] = <factory>, logging_first_step: bool = False, logging_steps: int = 500, save_steps: int = 500, save_total_limit: Optional[int] = None, no_cuda: bool = False, seed: int = 42, fp16: bool = False, fp16_opt_level: str = 'O1', local_rank: int = -1, tpu_num_cores: Optional[int] = None, tpu_metrics_debug: bool = False, debug: bool = False, dataloader_drop_last: bool = False, eval_steps: int = None, dataloader_num_workers: int = 0, past_index: int = -1, run_name: Optional[str] = None, disable_tqdm: Optional[bool] = None, remove_unused_columns: Optional[bool] = True, label_names: Optional[List[str]] = None, load_best_model_at_end: Optional[bool] = False, metric_for_best_model: Optional[str] = None, greater_is_better: Optional[bool] = None, tpu_name: str = None, poly_power: float = 1.0, xla: bool = False)[source]¶ TrainingArguments is the subset of the arguments we use in our example scripts which relate to the training loop itself.
Using
HfArgumentParserwe can turn this class into argparse arguments to be able to specify them on the command line.- Parameters
output_dir (
str) – The output directory where the model predictions and checkpoints will be written.overwrite_output_dir (
bool, optional, defaults toFalse) – IfTrue, overwrite the content of the output directory. Use this to continue training ifoutput_dirpoints to a checkpoint directory.do_train (
bool, optional, defaults toFalse) – Whether to run training or not.do_eval (
bool, optional, defaults toFalse) – Whether to run evaluation on the dev set or not.do_predict (
bool, optional, defaults toFalse) – Whether to run predictions on the test set or not.evaluate_during_training (
bool, optional, defaults toFalse) – Whether to run evaluation during training at each logging step or not.per_device_train_batch_size (
int, optional, defaults to 8) – The batch size per GPU/TPU core/CPU for training.per_device_eval_batch_size (
int, optional, defaults to 8) – The batch size per GPU/TPU core/CPU for evaluation.gradient_accumulation_steps –
(
int, optional, defaults to 1): Number of updates steps to accumulate the gradients for, before performing a backward/update pass.Warning
When using gradient accumulation, one step is counted as one step with backward pass. Therefore, logging, evaluation, save will be conducted every
gradient_accumulation_steps * xxx_steptraining examples.learning_rate (
float, optional, defaults to 5e-5) – The initial learning rate for Adam.weight_decay (
float, optional, defaults to 0) – The weight decay to apply (if not zero).adam_epsilon (
float, optional, defaults to 1e-8) – Epsilon for the Adam optimizer.max_grad_norm (
float, optional, defaults to 1.0) – Maximum gradient norm (for gradient clipping).num_train_epochs (
float, optional, defaults to 3.0) – Total number of training epochs to perform.max_steps (
int, optional, defaults to -1) – If set to a positive number, the total number of training steps to perform. Overridesnum_train_epochs.warmup_steps (
int, optional, defaults to 0) – Number of steps used for a linear warmup from 0 tolearning_rate.logging_dir (
str, optional) – Tensorboard log directory. Will default to runs/**CURRENT_DATETIME_HOSTNAME**.logging_first_step (
bool, optional, defaults toFalse) – Whether to log and evaluate the firstglobal_stepor not.logging_steps (
int, optional, defaults to 500) – Number of update steps between two logs.save_steps (
int, optional, defaults to 500) – Number of updates steps before two checkpoint saves.save_total_limit (
int, optional) – If a value is passed, will limit the total amount of checkpoints. Deletes the older checkpoints inoutput_dir.no_cuda (
bool, optional, defaults toFalse) – Whether to not use CUDA even when it is available or not.seed (
int, optional, defaults to 42) – Random seed for initialization.fp16 (
bool, optional, defaults toFalse) – Whether to use 16-bit (mixed) precision training (through NVIDIA apex) instead of 32-bit training.fp16_opt_level (
str, optional, defaults to ‘O1’) – Forfp16training, apex AMP optimization level selected in [‘O0’, ‘O1’, ‘O2’, and ‘O3’]. See details on the apex documentation.local_rank (
int, optional, defaults to -1) – During distributed training, the rank of the process.tpu_num_cores (
int, optional) – When training on TPU, the number of TPU cores (automatically passed by launcher script).debug (
bool, optional, defaults toFalse) – Whether to activate the trace to record computation graphs and profiling information or not.dataloader_drop_last (
bool, optional, defaults toFalse) – Whether to drop the last incomplete batch (if the length of the dataset is not divisible by the batch size) or not.eval_steps (
int, optional, defaults to 1000) – Number of update steps before two evaluations.past_index (
int, optional, defaults to -1) – Some models like TransformerXL or :doc`XLNet <../model_doc/xlnet>` can make use of the past hidden states for their predictions. If this argument is set to a positive int, theTrainerwill use the corresponding output (usually index 2) as the past state and feed it to the model at the next training step under the keyword argumentmems.tpu_name (
str, optional) – The name of the TPU the process is running on.run_name (
str, optional) – A descriptor for the run. Notably used for wandb logging.xla (
bool, optional) – Whether to activate the XLA compilation or not.
-
property
eval_batch_size¶ The actual batch size for evaluation (may differ from
per_gpu_eval_batch_sizein distributed training).
-
property
n_gpu¶ The number of replicas (CPUs, GPUs or TPU cores) used in this training.
-
property
n_replicas¶ The number of replicas (CPUs, GPUs or TPU cores) used in this training.
-
property
strategy¶ The strategy used for distributed training.
-
property
train_batch_size¶ The actual batch size for training (may differ from
per_gpu_train_batch_sizein distributed training).