Utilities for GenerationΒΆ
This page lists all the utility functions used by generate(),
greedy_search(), sample(),
beam_search(), and beam_sample().
Most of those are only useful if you are studying the code of the generate methods in the library.
LogitsProcessorΒΆ
A LogitsProcessor can be used to modify the prediction scores of a language model head for
generation.
-
class
transformers.LogitsProcessor[source]ΒΆ Abstract base class for all logit processors that can be applied during generation.
-
__call__(input_ids: torch.LongTensor, scores: torch.FloatTensor) → torch.FloatTensor[source]ΒΆ - Args:
- input_ids (
torch.LongTensorof shape(batch_size, sequence_length)): Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.- scores (
torch.FloatTensorof shape(batch_size, config.vocab_size)): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax.
- input_ids (
- Return:
torch.FloatTensorof shape(batch_size, config.vocab_size): The processed prediction scores.
Torch method for processing logits.
-
-
class
transformers.LogitsProcessorList[source]ΒΆ This class can be used to create a list of
LogitsProcessororLogitsWarperto subsequently process ascoresinput tensor. This class inherits from list and adds a specific __call__ method to apply eachLogitsProcessororLogitsProcessorto the inputs.-
__call__(input_ids: torch.LongTensor, scores: torch.FloatTensor) → torch.FloatTensor[source]ΒΆ - Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores (
torch.FloatTensorof shape(batch_size, config.vocab_size)) β Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax.
- Returns
The processed prediction scores.
- Return type
torch.FloatTensorof shape(batch_size, config.vocab_size)
-
-
class
transformers.MinLengthLogitsProcessor(min_length: int, eos_token_id: int)[source]ΒΆ transformers.LogitsProcessorenforcing a min-length by setting EOS probability to 0.- Parameters
min_length (
int) β The minimum length below which the score ofeos_token_idis set to-float("Inf").eos_token_id (
int) β The id of the end-of-sequence token.
-
__call__(input_ids: torch.LongTensor, scores: torch.FloatTensor) → torch.FloatTensor[source]ΒΆ - Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores β Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax.
Torch method for processing logits.
-
class
transformers.TemperatureLogitsWarper(temperature: float)[source]ΒΆ transformers.LogitsWarperfor temperature (exponential scaling output probability distribution).- Parameters
temperature (
float) β The value used to module the logits distribution.
-
__call__(input_ids: torch.Tensor, scores: torch.Tensor) → torch.Tensor[source]ΒΆ - Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores β Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax.
Torch method for warping logits.
-
class
transformers.RepetitionPenaltyLogitsProcessor(penalty: float)[source]ΒΆ transformers.LogitsProcessorenforcing an exponential penalty on repeated sequences.- Parameters
repetition_penalty (
float) β The parameter for repetition penalty. 1.0 means no penalty. See this paper for more details.
-
__call__(input_ids: torch.LongTensor, scores: torch.FloatTensor) → torch.FloatTensor[source]ΒΆ - Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores β Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax.
Torch method for processing logits.
-
class
transformers.TopPLogitsWarper(top_p: float, filter_value: float = - inf, min_tokens_to_keep: int = 1)[source]ΒΆ transformers.LogitsWarperthat performs top-p, i.e. restricting to top tokens summing to prob_cut_off <= prob_cut_off.- Parameters
top_p (
float) β If set to < 1, only the most probable tokens with probabilities that add up totop_por higher are kept for generation.filter_value (
float, optional, defaults to-float("Inf")) β All filtered values will be set to this float value.min_tokens_to_keep (
int, optional, defaults to 1) β Minimum number of tokens that cannot be filtered.
-
__call__(input_ids: torch.LongTensor, scores: torch.FloatTensor) → torch.FloatTensor[source]ΒΆ - Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores β Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax.
Torch method for warping logits.
-
class
transformers.TopKLogitsWarper(top_k: int, filter_value: float = - inf, min_tokens_to_keep: int = 1)[source]ΒΆ transformers.LogitsWarperthat performs top-k, i.e. restricting to the k highest probability elements.- Parameters
top_k (
int) β The number of highest probability vocabulary tokens to keep for top-k-filtering.filter_value (
float, optional, defaults to-float("Inf")) β All filtered values will be set to this float value.min_tokens_to_keep (
int, optional, defaults to 1) β Minimum number of tokens that cannot be filtered.
-
__call__(input_ids: torch.LongTensor, scores: torch.FloatTensor) → torch.FloatTensor[source]ΒΆ - Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores β Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax.
Torch method for warping logits.
-
class
transformers.NoRepeatNGramLogitsProcessor(ngram_size: int)[source]ΒΆ transformers.LogitsProcessorthat enforces no repetition of n-grams. See Fairseq.- Parameters
ngram_size (
int) β All ngrams of sizengram_sizecan only occur once.
-
__call__(input_ids: torch.LongTensor, scores: torch.FloatTensor) → torch.FloatTensor[source]ΒΆ - Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores β Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax.
Torch method for processing logits.
-
class
transformers.NoBadWordsLogitsProcessor(bad_words_ids: Iterable[Iterable[int]], eos_token_id: int)[source]ΒΆ transformers.LogitsProcessorthat enforces that specified sequences will never be sampled.- Parameters
bad_words_ids (
List[List[int]]) β List of list of token ids that are not allowed to be generated. In order to get the tokens of the words that should not appear in the generated text, usetokenizer(bad_word, add_prefix_space=True).input_ids.eos_token_id (
int) β The id of the end-of-sequence token.
-
__call__(input_ids: torch.LongTensor, scores: torch.FloatTensor) → torch.FloatTensor[source]ΒΆ - Parameters
input_ids (
torch.LongTensorof shape(batch_size, sequence_length)) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using
BertTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.scores β Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax.
Torch method for processing logits.
BeamSearchΒΆ
-
class
transformers.BeamScorer[source]ΒΆ Abstract base class for all beam scorers that are used for
beam_search()andbeam_sample().-
abstract
finalize(input_ids: torch.LongTensor, next_scores: torch.FloatTensor, next_tokens: torch.LongTensor, next_indices: torch.LongTensor, **kwargs) → torch.LongTensor[source]ΒΆ - Parameters
input_ids (
torch.LongTensorof shape(batch_size * num_beams, sequence_length)) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using any class inheriting from
PretrainedTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.final_beam_scores (
torch.FloatTensorof shape(batch_size * num_beams)) β The final scores of all non-finished beams.final_beam_tokens (
torch.FloatTensorof shape(batch_size * num_beams)) β The last tokens to be added to the non-finished beam_hypotheses.final_beam_indices (
torch.FloatTensorof shape(batch_size * num_beams)) β The beam indices indicating to which beam thefinal_beam_tokensshall be added.pad_token_id (
int, optional) β The id of the padding token.eos_token_id (
int, optional) β The id of the end-of-sequence token.
- Returns
The generated sequences. The second dimension (sequence_length) is either equal to
max_lengthor shorter if all batches finished early due to theeos_token_id.- Return type
torch.LongTensorof shape(batch_size * num_return_sequences, sequence_length)
-
abstract
process(input_ids: torch.LongTensor, next_scores: torch.FloatTensor, next_tokens: torch.LongTensor, next_indices: torch.LongTensor, **kwargs) → Tuple[torch.Tensor][source]ΒΆ - Parameters
input_ids (
torch.LongTensorof shape(batch_size * num_beams, sequence_length)) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using any class inheriting from
PretrainedTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.next_scores (
torch.FloatTensorof shape(batch_size, 2 * num_beams)) β Current scores of the top2 * num_beamsnon-finished beam hypotheses.next_tokens (
torch.LongTensorof shape(batch_size, 2 * num_beams)) βinput_idsof the tokens corresponding to the top2 * num_beamsnon-finished beam hypotheses.next_indices (
torch.LongTensorof shape(batch_size, 2 * num_beams)) β Beam indices indicating to which beam hypothesis thenext_tokenscorrespond.pad_token_id (
int, optional) β The id of the padding token.eos_token_id (
int, optional) β The id of the end-of-sequence token.
- Returns
A dictionary composed of the fields as defined above:
next_beam_scores (
torch.FloatTensorof shape(batch_size * num_beams)) β Updated scores of all non-finished beams.next_beam_tokens (
torch.FloatTensorof shape(batch_size * num_beams)) β Next tokens to be added to the non-finished beam_hypotheses.next_beam_indices (
torch.FloatTensorof shape(batch_size * num_beams)) β Beam indices indicating to which beam the next tokens shall be added.
- Return type
UserDict
-
abstract
-
class
transformers.BeamSearchScorer(batch_size: int, max_length: int, num_beams: int, device: torch.device, length_penalty: Optional[float] = 1.0, do_early_stopping: Optional[bool] = False, num_beam_hyps_to_keep: Optional[int] = 1)[source]ΒΆ transformers.BeamScorerimplementing standard beam search decoding.Adapted in part from Facebookβs XLM beam search code.
- Parameters
batch_size (
int) β Batch Size ofinput_idsfor which beam search decoding is run in parallel.max_length (
int) β The maximum length of the sequence to be generated.num_beams (
int) β Number of beams for beam search.device (
torch.device) β Defines the device type (e.g.,"cpu"or"cuda") on which this instance ofBeamSearchScorerwill be allocated.length_penalty (
float, optional, defaults to 1.0) β Exponential penalty to the length. 1.0 means no penalty. Set to values < 1.0 in order to encourage the model to generate shorter sequences, to a value > 1.0 in order to encourage the model to produce longer sequences.do_early_stopping (
bool, optional, defaults toFalse) β Whether to stop the beam search when at leastnum_beamssentences are finished per batch or not.num_beam_hyps_to_keep (
int, optional, defaults to 1) β The number of beam hypotheses that shall be returned upon callingfinalize().
-
finalize(input_ids: torch.LongTensor, final_beam_scores: torch.FloatTensor, final_beam_tokens: torch.LongTensor, final_beam_indices: torch.LongTensor, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None) → torch.LongTensor[source]ΒΆ - Parameters
input_ids (
torch.LongTensorof shape(batch_size * num_beams, sequence_length)) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using any class inheriting from
PretrainedTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.final_beam_scores (
torch.FloatTensorof shape(batch_size * num_beams)) β The final scores of all non-finished beams.final_beam_tokens (
torch.FloatTensorof shape(batch_size * num_beams)) β The last tokens to be added to the non-finished beam_hypotheses.final_beam_indices (
torch.FloatTensorof shape(batch_size * num_beams)) β The beam indices indicating to which beam thefinal_beam_tokensshall be added.pad_token_id (
int, optional) β The id of the padding token.eos_token_id (
int, optional) β The id of the end-of-sequence token.
- Returns
The generated sequences. The second dimension (sequence_length) is either equal to
max_lengthor shorter if all batches finished early due to theeos_token_id.- Return type
torch.LongTensorof shape(batch_size * num_return_sequences, sequence_length)
-
process(input_ids: torch.LongTensor, next_scores: torch.FloatTensor, next_tokens: torch.LongTensor, next_indices: torch.LongTensor, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None) → Tuple[torch.Tensor][source]ΒΆ - Parameters
input_ids (
torch.LongTensorof shape(batch_size * num_beams, sequence_length)) βIndices of input sequence tokens in the vocabulary.
Indices can be obtained using any class inheriting from
PretrainedTokenizer. Seetransformers.PreTrainedTokenizer.encode()andtransformers.PreTrainedTokenizer.__call__()for details.next_scores (
torch.FloatTensorof shape(batch_size, 2 * num_beams)) β Current scores of the top2 * num_beamsnon-finished beam hypotheses.next_tokens (
torch.LongTensorof shape(batch_size, 2 * num_beams)) βinput_idsof the tokens corresponding to the top2 * num_beamsnon-finished beam hypotheses.next_indices (
torch.LongTensorof shape(batch_size, 2 * num_beams)) β Beam indices indicating to which beam hypothesis thenext_tokenscorrespond.pad_token_id (
int, optional) β The id of the padding token.eos_token_id (
int, optional) β The id of the end-of-sequence token.
- Returns
A dictionary composed of the fields as defined above:
next_beam_scores (
torch.FloatTensorof shape(batch_size * num_beams)) β Updated scores of all non-finished beams.next_beam_tokens (
torch.FloatTensorof shape(batch_size * num_beams)) β Next tokens to be added to the non-finished beam_hypotheses.next_beam_indices (
torch.FloatTensorof shape(batch_size * num_beams)) β Beam indices indicating to which beam the next tokens shall be added.
- Return type
UserDict