MINT
Collection
3 items
โข
Updated
This model is a fine-tuned version of Qwen/Qwen2-VL-7B-Instruct on the resisc45, the ucmerced, the fer2013, the scienceqa, the mmimdb and the screen2words datasets. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.8948 | 0.0481 | 500 | 0.6562 |
| 0.6832 | 0.0961 | 1000 | 0.6148 |
| 0.5927 | 0.1442 | 1500 | 0.5914 |
| 0.6813 | 0.1923 | 2000 | 0.5738 |
| 0.4088 | 0.2403 | 2500 | 0.5824 |
| 0.6205 | 0.2884 | 3000 | 0.5768 |
| 0.7229 | 0.3364 | 3500 | 0.5607 |
| 0.6292 | 0.3845 | 4000 | 0.5635 |
| 0.6033 | 0.4326 | 4500 | 0.5492 |
| 0.4986 | 0.4806 | 5000 | 0.5470 |
| 0.623 | 0.5287 | 5500 | 0.5453 |
| 0.6596 | 0.5768 | 6000 | 0.5430 |
| 0.6779 | 0.6248 | 6500 | 0.5386 |
| 0.6796 | 0.6729 | 7000 | 0.5345 |
| 0.5758 | 0.7209 | 7500 | 0.5397 |
| 0.5142 | 0.7690 | 8000 | 0.5340 |
| 0.5752 | 0.8171 | 8500 | 0.5318 |
| 0.4997 | 0.8651 | 9000 | 0.5289 |
| 0.6262 | 0.9132 | 9500 | 0.5303 |
| 0.6193 | 0.9613 | 10000 | 0.5334 |
| 0.7338 | 1.0093 | 10500 | 0.5258 |
| 0.6178 | 1.0574 | 11000 | 0.5341 |
| 0.5629 | 1.1055 | 11500 | 0.5253 |
| 0.6407 | 1.1535 | 12000 | 0.5292 |
| 0.5549 | 1.2016 | 12500 | 0.5284 |
| 0.4914 | 1.2496 | 13000 | 0.5231 |
| 0.4535 | 1.2977 | 13500 | 0.5242 |
| 0.5162 | 1.3458 | 14000 | 0.5224 |
| 0.4466 | 1.3938 | 14500 | 0.5275 |
| 0.5427 | 1.4419 | 15000 | 0.5243 |
| 0.4722 | 1.4900 | 15500 | 0.5145 |
| 0.6199 | 1.5380 | 16000 | 0.5200 |
| 0.4566 | 1.5861 | 16500 | 0.5288 |
| 0.5564 | 1.6341 | 17000 | 0.5169 |
| 0.5187 | 1.6822 | 17500 | 0.5143 |
| 0.5339 | 1.7303 | 18000 | 0.5104 |
| 0.5703 | 1.7783 | 18500 | 0.5110 |
| 0.5368 | 1.8264 | 19000 | 0.5142 |
| 0.6051 | 1.8745 | 19500 | 0.5110 |
| 0.4187 | 1.9225 | 20000 | 0.5140 |
| 0.5876 | 1.9706 | 20500 | 0.5118 |
| 0.2579 | 2.0186 | 21000 | 0.5429 |
| 0.3344 | 2.0667 | 21500 | 0.5561 |
| 0.2026 | 2.1148 | 22000 | 0.5703 |
| 0.3255 | 2.1628 | 22500 | 0.5742 |
| 0.3463 | 2.2109 | 23000 | 0.5739 |
| 0.3232 | 2.2590 | 23500 | 0.5824 |
| 0.2879 | 2.3070 | 24000 | 0.5799 |
| 0.3236 | 2.3551 | 24500 | 0.5742 |
| 0.3262 | 2.4032 | 25000 | 0.5799 |
| 0.3792 | 2.4512 | 25500 | 0.5767 |
| 0.3268 | 2.4993 | 26000 | 0.5762 |
| 0.2743 | 2.5473 | 26500 | 0.5775 |
| 0.3534 | 2.5954 | 27000 | 0.5800 |
| 0.2689 | 2.6435 | 27500 | 0.5803 |
| 0.3619 | 2.6915 | 28000 | 0.5801 |
| 0.3634 | 2.7396 | 28500 | 0.5803 |
| 0.3301 | 2.7877 | 29000 | 0.5804 |
| 0.3127 | 2.8357 | 29500 | 0.5821 |
| 0.3687 | 2.8838 | 30000 | 0.5810 |
| 0.2652 | 2.9318 | 30500 | 0.5806 |
| 0.4041 | 2.9799 | 31000 | 0.5809 |