sft_redundancy_new

This model is a fine-tuned version of Qwen/Qwen2-VL-7B-Instruct on the resisc45, the ucmerced, the fer2013, the scienceqa, the mmimdb and the screen2words datasets. It achieves the following results on the evaluation set:

  • Loss: 0.5808

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss
0.8948 0.0481 500 0.6562
0.6832 0.0961 1000 0.6148
0.5927 0.1442 1500 0.5914
0.6813 0.1923 2000 0.5738
0.4088 0.2403 2500 0.5824
0.6205 0.2884 3000 0.5768
0.7229 0.3364 3500 0.5607
0.6292 0.3845 4000 0.5635
0.6033 0.4326 4500 0.5492
0.4986 0.4806 5000 0.5470
0.623 0.5287 5500 0.5453
0.6596 0.5768 6000 0.5430
0.6779 0.6248 6500 0.5386
0.6796 0.6729 7000 0.5345
0.5758 0.7209 7500 0.5397
0.5142 0.7690 8000 0.5340
0.5752 0.8171 8500 0.5318
0.4997 0.8651 9000 0.5289
0.6262 0.9132 9500 0.5303
0.6193 0.9613 10000 0.5334
0.7338 1.0093 10500 0.5258
0.6178 1.0574 11000 0.5341
0.5629 1.1055 11500 0.5253
0.6407 1.1535 12000 0.5292
0.5549 1.2016 12500 0.5284
0.4914 1.2496 13000 0.5231
0.4535 1.2977 13500 0.5242
0.5162 1.3458 14000 0.5224
0.4466 1.3938 14500 0.5275
0.5427 1.4419 15000 0.5243
0.4722 1.4900 15500 0.5145
0.6199 1.5380 16000 0.5200
0.4566 1.5861 16500 0.5288
0.5564 1.6341 17000 0.5169
0.5187 1.6822 17500 0.5143
0.5339 1.7303 18000 0.5104
0.5703 1.7783 18500 0.5110
0.5368 1.8264 19000 0.5142
0.6051 1.8745 19500 0.5110
0.4187 1.9225 20000 0.5140
0.5876 1.9706 20500 0.5118
0.2579 2.0186 21000 0.5429
0.3344 2.0667 21500 0.5561
0.2026 2.1148 22000 0.5703
0.3255 2.1628 22500 0.5742
0.3463 2.2109 23000 0.5739
0.3232 2.2590 23500 0.5824
0.2879 2.3070 24000 0.5799
0.3236 2.3551 24500 0.5742
0.3262 2.4032 25000 0.5799
0.3792 2.4512 25500 0.5767
0.3268 2.4993 26000 0.5762
0.2743 2.5473 26500 0.5775
0.3534 2.5954 27000 0.5800
0.2689 2.6435 27500 0.5803
0.3619 2.6915 28000 0.5801
0.3634 2.7396 28500 0.5803
0.3301 2.7877 29000 0.5804
0.3127 2.8357 29500 0.5821
0.3687 2.8838 30000 0.5810
0.2652 2.9318 30500 0.5806
0.4041 2.9799 31000 0.5809

Framework versions

  • PEFT 0.12.0
  • Transformers 4.45.2
  • Pytorch 2.1.2+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for sxj1215/Qwen2-VL-Redundancy

Base model

Qwen/Qwen2-VL-7B
Adapter
(186)
this model

Collection including sxj1215/Qwen2-VL-Redundancy