SentenceTransformer based on intfloat/multilingual-e5-small
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("srikarvar/fine_tuned_model_11")
sentences = [
'What is the time now?',
'Current time',
'Guide to starting a small business',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Binary Classification
| Metric |
Value |
| cosine_accuracy |
0.9213 |
| cosine_accuracy_threshold |
0.8385 |
| cosine_f1 |
0.9404 |
| cosine_f1_threshold |
0.8385 |
| cosine_precision |
0.9371 |
| cosine_recall |
0.9437 |
| cosine_ap |
0.9872 |
| dot_accuracy |
0.9213 |
| dot_accuracy_threshold |
0.8385 |
| dot_f1 |
0.9404 |
| dot_f1_threshold |
0.8385 |
| dot_precision |
0.9371 |
| dot_recall |
0.9437 |
| dot_ap |
0.9872 |
| manhattan_accuracy |
0.9167 |
| manhattan_accuracy_threshold |
8.6584 |
| manhattan_f1 |
0.9392 |
| manhattan_f1_threshold |
9.5941 |
| manhattan_precision |
0.9026 |
| manhattan_recall |
0.9789 |
| manhattan_ap |
0.9872 |
| euclidean_accuracy |
0.9213 |
| euclidean_accuracy_threshold |
0.5683 |
| euclidean_f1 |
0.9404 |
| euclidean_f1_threshold |
0.5683 |
| euclidean_precision |
0.9371 |
| euclidean_recall |
0.9437 |
| euclidean_ap |
0.9872 |
| max_accuracy |
0.9213 |
| max_accuracy_threshold |
8.6584 |
| max_f1 |
0.9404 |
| max_f1_threshold |
9.5941 |
| max_precision |
0.9371 |
| max_recall |
0.9789 |
| max_ap |
0.9872 |
Binary Classification
| Metric |
Value |
| cosine_accuracy |
0.9306 |
| cosine_accuracy_threshold |
0.857 |
| cosine_f1 |
0.9485 |
| cosine_f1_threshold |
0.8532 |
| cosine_precision |
0.9262 |
| cosine_recall |
0.9718 |
| cosine_ap |
0.9898 |
| dot_accuracy |
0.9306 |
| dot_accuracy_threshold |
0.857 |
| dot_f1 |
0.9485 |
| dot_f1_threshold |
0.8532 |
| dot_precision |
0.9262 |
| dot_recall |
0.9718 |
| dot_ap |
0.9898 |
| manhattan_accuracy |
0.9352 |
| manhattan_accuracy_threshold |
8.2998 |
| manhattan_f1 |
0.9517 |
| manhattan_f1_threshold |
8.2998 |
| manhattan_precision |
0.9324 |
| manhattan_recall |
0.9718 |
| manhattan_ap |
0.9895 |
| euclidean_accuracy |
0.9306 |
| euclidean_accuracy_threshold |
0.5348 |
| euclidean_f1 |
0.9485 |
| euclidean_f1_threshold |
0.5419 |
| euclidean_precision |
0.9262 |
| euclidean_recall |
0.9718 |
| euclidean_ap |
0.9898 |
| max_accuracy |
0.9352 |
| max_accuracy_threshold |
8.2998 |
| max_f1 |
0.9517 |
| max_f1_threshold |
8.2998 |
| max_precision |
0.9324 |
| max_recall |
0.9718 |
| max_ap |
0.9898 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,936 training samples
- Columns:
label, sentence1, and sentence2
- Approximate statistics based on the first 1000 samples:
|
label |
sentence1 |
sentence2 |
| type |
int |
string |
string |
| details |
|
- min: 6 tokens
- mean: 16.19 tokens
- max: 98 tokens
|
- min: 4 tokens
- mean: 15.75 tokens
- max: 98 tokens
|
- Samples:
| label |
sentence1 |
sentence2 |
1 |
How do I apply for a credit card? |
How do I get a credit card? |
1 |
What is the function of a learning rate scheduler? |
How does a learning rate scheduler optimize training? |
0 |
What is the speed of a rocket? |
What is the speed of a jet plane? |
- Loss:
OnlineContrastiveLoss
Evaluation Dataset
Unnamed Dataset
- Size: 216 evaluation samples
- Columns:
label, sentence1, and sentence2
- Approximate statistics based on the first 216 samples:
|
label |
sentence1 |
sentence2 |
| type |
int |
string |
string |
| details |
|
- min: 6 tokens
- mean: 15.87 tokens
- max: 87 tokens
|
- min: 4 tokens
- mean: 15.61 tokens
- max: 86 tokens
|
- Samples:
| label |
sentence1 |
sentence2 |
0 |
What is the freezing point of ethanol? |
What is the boiling point of ethanol? |
0 |
Healthy habits |
Unhealthy habits |
0 |
What is the difference between omnivores and herbivores? |
What is the difference between omnivores, carnivores, and herbivores? |
- Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epoch
per_device_train_batch_size: 32
per_device_eval_batch_size: 32
gradient_accumulation_steps: 2
num_train_epochs: 4
warmup_ratio: 0.1
load_best_model_at_end: True
optim: adamw_torch_fused
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: epoch
prediction_loss_only: True
per_device_train_batch_size: 32
per_device_eval_batch_size: 32
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 2
eval_accumulation_steps: None
learning_rate: 5e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 4
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch_fused
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
loss |
pair-class-dev_max_ap |
pair-class-test_max_ap |
| 0 |
0 |
- |
- |
0.8705 |
- |
| 0.3279 |
10 |
1.3831 |
- |
- |
- |
| 0.6557 |
20 |
0.749 |
- |
- |
- |
| 0.9836 |
30 |
0.5578 |
0.2991 |
0.9862 |
- |
| 1.3115 |
40 |
0.3577 |
- |
- |
- |
| 1.6393 |
50 |
0.2594 |
- |
- |
- |
| 1.9672 |
60 |
0.2119 |
- |
- |
- |
| 2.0 |
61 |
- |
0.2753 |
0.9898 |
- |
| 2.2951 |
70 |
0.17 |
- |
- |
- |
| 2.6230 |
80 |
0.1126 |
- |
- |
- |
| 2.9508 |
90 |
0.0538 |
- |
- |
- |
| 2.9836 |
91 |
- |
0.3222 |
0.9864 |
- |
| 3.2787 |
100 |
0.1423 |
- |
- |
- |
| 3.6066 |
110 |
0.066 |
- |
- |
- |
| 3.9344 |
120 |
0.0486 |
0.3237 |
0.9872 |
0.9898 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}