SentenceTransformer based on intfloat/multilingual-e5-small
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("srikarvar/fine_tuned_model_1")
sentences = [
'How is the weather today?',
'What is the weather like today?',
'Who was the first female Prime Minister of the UK?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Binary Classification
| Metric |
Value |
| cosine_accuracy |
0.9389 |
| cosine_accuracy_threshold |
0.7887 |
| cosine_f1 |
0.9412 |
| cosine_f1_threshold |
0.7887 |
| cosine_precision |
0.9573 |
| cosine_recall |
0.9256 |
| cosine_ap |
0.974 |
| dot_accuracy |
0.9389 |
| dot_accuracy_threshold |
0.7887 |
| dot_f1 |
0.9412 |
| dot_f1_threshold |
0.7887 |
| dot_precision |
0.9573 |
| dot_recall |
0.9256 |
| dot_ap |
0.974 |
| manhattan_accuracy |
0.9389 |
| manhattan_accuracy_threshold |
10.1324 |
| manhattan_f1 |
0.9412 |
| manhattan_f1_threshold |
10.1324 |
| manhattan_precision |
0.9573 |
| manhattan_recall |
0.9256 |
| manhattan_ap |
0.9729 |
| euclidean_accuracy |
0.9389 |
| euclidean_accuracy_threshold |
0.6501 |
| euclidean_f1 |
0.9412 |
| euclidean_f1_threshold |
0.6501 |
| euclidean_precision |
0.9573 |
| euclidean_recall |
0.9256 |
| euclidean_ap |
0.974 |
| max_accuracy |
0.9389 |
| max_accuracy_threshold |
10.1324 |
| max_f1 |
0.9412 |
| max_f1_threshold |
10.1324 |
| max_precision |
0.9573 |
| max_recall |
0.9256 |
| max_ap |
0.974 |
Binary Classification
| Metric |
Value |
| cosine_accuracy |
0.9389 |
| cosine_accuracy_threshold |
0.8208 |
| cosine_f1 |
0.9421 |
| cosine_f1_threshold |
0.8208 |
| cosine_precision |
0.9421 |
| cosine_recall |
0.9421 |
| cosine_ap |
0.9732 |
| dot_accuracy |
0.9389 |
| dot_accuracy_threshold |
0.8208 |
| dot_f1 |
0.9421 |
| dot_f1_threshold |
0.8208 |
| dot_precision |
0.9421 |
| dot_recall |
0.9421 |
| dot_ap |
0.9732 |
| manhattan_accuracy |
0.9345 |
| manhattan_accuracy_threshold |
9.3871 |
| manhattan_f1 |
0.9383 |
| manhattan_f1_threshold |
9.5161 |
| manhattan_precision |
0.9344 |
| manhattan_recall |
0.9421 |
| manhattan_ap |
0.9721 |
| euclidean_accuracy |
0.9389 |
| euclidean_accuracy_threshold |
0.5987 |
| euclidean_f1 |
0.9421 |
| euclidean_f1_threshold |
0.5987 |
| euclidean_precision |
0.9421 |
| euclidean_recall |
0.9421 |
| euclidean_ap |
0.9732 |
| max_accuracy |
0.9389 |
| max_accuracy_threshold |
9.3871 |
| max_f1 |
0.9421 |
| max_f1_threshold |
9.5161 |
| max_precision |
0.9421 |
| max_recall |
0.9421 |
| max_ap |
0.9732 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 916 training samples
- Columns:
label, sentence2, and sentence1
- Approximate statistics based on the first 1000 samples:
|
label |
sentence2 |
sentence1 |
| type |
int |
string |
string |
| details |
|
- min: 4 tokens
- mean: 10.32 tokens
- max: 22 tokens
|
- min: 6 tokens
- mean: 10.92 tokens
- max: 22 tokens
|
- Samples:
| label |
sentence2 |
sentence1 |
1 |
What are the potential side effects of this medication? |
What are the side effects of this drug? |
0 |
How to fix a torn pocket? |
How to fix a broken zipper? |
0 |
How to make a chocolate chip cookie dough? |
How to bake a chocolate chip cookie? |
- Loss:
OnlineContrastiveLoss
Evaluation Dataset
Unnamed Dataset
- Size: 229 evaluation samples
- Columns:
label, sentence2, and sentence1
- Approximate statistics based on the first 1000 samples:
|
label |
sentence2 |
sentence1 |
| type |
int |
string |
string |
| details |
|
- min: 4 tokens
- mean: 9.95 tokens
- max: 16 tokens
|
- min: 6 tokens
- mean: 10.81 tokens
- max: 20 tokens
|
- Samples:
| label |
sentence2 |
sentence1 |
0 |
What methods are used to measure a nation's GDP? |
How is the GDP of a country measured? |
0 |
What is the currency of Japan? |
What is the currency of China? |
1 |
Steps to cultivate tomatoes at home |
How to grow tomatoes in a garden? |
- Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epoch
per_device_train_batch_size: 32
per_device_eval_batch_size: 32
gradient_accumulation_steps: 2
weight_decay: 0.01
num_train_epochs: 8
warmup_ratio: 0.1
load_best_model_at_end: True
optim: adamw_torch_fused
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: epoch
prediction_loss_only: True
per_device_train_batch_size: 32
per_device_eval_batch_size: 32
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 2
eval_accumulation_steps: None
learning_rate: 5e-05
weight_decay: 0.01
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 8
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch_fused
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
loss |
pair-class-dev_max_ap |
pair-class-test_max_ap |
| 0 |
0 |
- |
- |
0.7130 |
- |
| 0.6897 |
10 |
3.0972 |
- |
- |
- |
| 1.0345 |
15 |
- |
0.8033 |
0.9272 |
- |
| 1.3448 |
20 |
1.0451 |
- |
- |
- |
| 2.0345 |
30 |
0.5786 |
0.4910 |
0.9680 |
- |
| 2.6897 |
40 |
0.2996 |
- |
- |
- |
| 3.0345 |
45 |
- |
0.4487 |
0.9731 |
- |
| 3.3448 |
50 |
0.0901 |
- |
- |
- |
| 4.0345 |
60 |
0.067 |
0.4115 |
0.9732 |
- |
| 4.6897 |
70 |
0.0729 |
- |
- |
- |
| 5.0345 |
75 |
- |
0.4543 |
0.9727 |
- |
| 5.3448 |
80 |
0.0453 |
- |
- |
- |
| 6.0345 |
90 |
0.0637 |
0.4249 |
0.9736 |
- |
| 6.6897 |
100 |
0.0388 |
- |
- |
- |
| 7.0345 |
105 |
- |
0.4223 |
0.9740 |
- |
| 7.3448 |
110 |
0.0382 |
- |
- |
- |
| 7.4828 |
112 |
- |
0.4226 |
0.9740 |
0.9732 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}