Spaces:
Running
Running
File size: 7,331 Bytes
f3609ef 19f8af1 f3609ef 19f8af1 060ca74 19f8af1 060ca74 19f8af1 e1ecdae 19f8af1 04e6357 19f8af1 1529ac0 0646ac2 19f8af1 f3609ef 19f8af1 f3609ef 19f8af1 f3609ef 19f8af1 f3609ef 19f8af1 f3609ef 19f8af1 f3609ef 19f8af1 f3609ef 060ca74 19f8af1 f3609ef 060ca74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
from io import BytesIO
from typing import Callable, cast
import modal
from configs import image, modal_class_config
with image.imports():
import torch
from torchvision import transforms
from PIL import Image
import numpy as np
from diffusers import FluxFillPipeline
from nunchaku import NunchakuFluxTransformer2dModel
from nunchaku.utils import get_precision
from nunchaku.lora.flux.compose import compose_lora
from auto_masker import AutoInpaintMaskGenerator
TransformType = Callable[[Image.Image | np.ndarray], torch.Tensor]
app = modal.App("vibe-shopping-virtual-try")
@app.cls(**modal_class_config, max_containers=1)
class VirtualTryModel:
@modal.fastapi_endpoint(method="GET", label="health-check")
def health_check(self) -> str:
return "Virtual Try Model is healthy!"
@modal.enter()
def enter(self):
precision = get_precision() # auto-detect precision 'int4' or 'fp4' based GPU
transformer = NunchakuFluxTransformer2dModel.from_pretrained(
f"mit-han-lab/nunchaku-flux.1-fill-dev/svdq-{precision}_r32-flux.1-fill-dev.safetensors"
)
transformer.set_attention_impl("nunchaku-fp16")
composed_lora = compose_lora(
[
("xiaozaa/catvton-flux-lora-alpha/pytorch_lora_weights.safetensors", 1),
("ByteDance/Hyper-SD/Hyper-FLUX.1-dev-8steps-lora.safetensors", 0.125),
]
)
transformer.update_lora_params(composed_lora)
self.pipe = FluxFillPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Fill-dev",
transformer=transformer,
torch_dtype=torch.bfloat16,
).to("cuda")
self.auto_masker = AutoInpaintMaskGenerator()
def _get_preprocessors(
self, input_size: tuple[int, int], target_megapixels: float = 1.0
) -> tuple[TransformType, TransformType, tuple[int, int]]:
num_pixels = int(target_megapixels * 1024 * 1024)
input_width, input_height = input_size
# Resizes the input dimensions to the target number of megapixels while maintaining
# the aspect ratio and ensuring the new dimensions are multiples of 64.
scale_by = np.sqrt(num_pixels / (input_height * input_width))
new_height = int(np.ceil((input_height * scale_by) / 64)) * 64
new_width = int(np.ceil((input_width * scale_by) / 64)) * 64
transform = cast(
TransformType,
transforms.Compose(
[
transforms.ToTensor(),
transforms.Resize((new_height, new_width)),
transforms.Normalize([0.5], [0.5]),
]
),
)
mask_transform = cast(
TransformType,
transforms.Compose(
[
transforms.ToTensor(),
transforms.Resize((new_height, new_width)),
]
),
)
return transform, mask_transform, (new_width, new_height)
def _bytes_to_image(self, byte_stream: bytes, mode: str = "RGB") -> Image.Image:
"""Convert bytes to PIL Image."""
return Image.open(BytesIO(byte_stream)).convert(mode)
@modal.method()
def try_it(
self,
image_bytes: bytes,
item_to_try_bytes: bytes,
mask_bytes: bytes | None = None,
prompt: str | None = None,
masking_prompt: str | None = None,
) -> bytes:
# We are using bytes for images for serialization/deserialization
# during Modal function calls.
assert mask_bytes or masking_prompt, (
"Either mask or masking_prompt must be provided."
)
image = self._bytes_to_image(image_bytes)
item_to_try = self._bytes_to_image(item_to_try_bytes)
if mask_bytes:
mask = self._bytes_to_image(mask_bytes, mode="L")
else:
mask = self.auto_masker.generate_mask(
image,
prompt=masking_prompt, # type: ignore
)
preprocessor, mask_preprocessor, output_size = self._get_preprocessors(
input_size=image.size,
target_megapixels=0.7, # The image will be stacked which will double the pixel count
)
image_tensor = preprocessor(image.convert("RGB"))
item_to_try_tensor = preprocessor(item_to_try.convert("RGB"))
mask_tensor = mask_preprocessor(mask)
# Create concatenated images along the width axis
inpaint_image = torch.cat([item_to_try_tensor, image_tensor], dim=2)
extended_mask = torch.cat([torch.zeros_like(mask_tensor), mask_tensor], dim=2)
prompt = prompt or (
"The pair of images highlights a product and its use in context, high resolution, 4K, 8K;"
"[IMAGE1] Detailed product shot of the item."
"[IMAGE2] The same item shown in a realistic lifestyle or usage setting."
)
width, height = output_size
result = self.pipe(
height=height,
width=width * 2,
image=inpaint_image,
mask_image=extended_mask,
num_inference_steps=10,
generator=torch.Generator("cuda").manual_seed(11),
max_sequence_length=512,
guidance_scale=30,
prompt=prompt,
).images[0]
output_image = result.crop((width, 0, width * 2, height))
byte_stream = BytesIO()
output_image.save(byte_stream, format="WEBP", quality=90)
return byte_stream.getvalue()
###### ------ FOR TESTING PURPOSES ONLY ------ ######
@app.local_entrypoint()
def main(twice: bool = True):
import time
from pathlib import Path
test_data_dir = Path(__file__).parent / "test_data"
with open(test_data_dir / "target_image.jpg", "rb") as f:
target_image_bytes = f.read()
with open(test_data_dir / "item_to_try.jpg", "rb") as f:
item_to_try_bytes = f.read()
with open(test_data_dir / "item_to_try2.png", "rb") as f:
item_to_try_2_bytes = f.read()
prompt = (
"The pair of images highlights a clothing and its styling on a model, high resolution, 4K, 8K; "
"[IMAGE1] Detailed product shot of a clothing"
"[IMAGE2] The same cloth is worn by a model in a lifestyle setting."
)
t0 = time.time()
image_bytes = VirtualTryModel().try_it.remote(
prompt=prompt,
image_bytes=target_image_bytes,
item_to_try_bytes=item_to_try_bytes,
masking_prompt="t-shirt, arms, neck",
)
output_path = test_data_dir / "output1.jpg"
output_path.parent.mkdir(exist_ok=True, parents=True)
output_path.write_bytes(image_bytes)
print(f"🎨 first inference latency: {time.time() - t0:.2f} seconds")
if twice:
t0 = time.time()
image_bytes = VirtualTryModel().try_it.remote(
prompt=prompt,
image_bytes=target_image_bytes,
item_to_try_bytes=item_to_try_2_bytes,
masking_prompt="t-shirt, arms",
)
print(f"🎨 second inference latency: {time.time() - t0:.2f} seconds")
output_path = test_data_dir / "output2.jpg"
output_path.parent.mkdir(exist_ok=True, parents=True)
output_path.write_bytes(image_bytes)
|