Spaces:
Running
Running
[vtry] Implement VirtualTryModel
Browse files- virtual_try/app.py +154 -0
- virtual_try/configs.py +21 -0
virtual_try/app.py
ADDED
|
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Callable, cast
|
| 2 |
+
|
| 3 |
+
import modal
|
| 4 |
+
from configs import (
|
| 5 |
+
image,
|
| 6 |
+
hf_cache_vol,
|
| 7 |
+
API_KEY,
|
| 8 |
+
MINUTE,
|
| 9 |
+
PORT,
|
| 10 |
+
)
|
| 11 |
+
|
| 12 |
+
with image.imports():
|
| 13 |
+
import torch
|
| 14 |
+
from torchvision import transforms
|
| 15 |
+
from PIL import Image
|
| 16 |
+
import numpy as np
|
| 17 |
+
from diffusers import FluxFillPipeline
|
| 18 |
+
from nunchaku import NunchakuFluxTransformer2dModel
|
| 19 |
+
from nunchaku.utils import get_precision
|
| 20 |
+
from nunchaku.lora.flux.compose import compose_lora
|
| 21 |
+
|
| 22 |
+
from virtual_try.auto_masker import AutoInpaintMaskGenerator
|
| 23 |
+
|
| 24 |
+
TransformType = Callable[[Image.Image | np.ndarray], torch.Tensor]
|
| 25 |
+
|
| 26 |
+
app = modal.App("vibe-shopping")
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
@app.cls(
|
| 30 |
+
image=image,
|
| 31 |
+
gpu="A100-40GB",
|
| 32 |
+
cpu=4, # 8vCPUs
|
| 33 |
+
memory=16, # 16 GB RAM
|
| 34 |
+
volumes={
|
| 35 |
+
"/root/.cache/huggingface": hf_cache_vol,
|
| 36 |
+
},
|
| 37 |
+
secrets=[API_KEY],
|
| 38 |
+
scaledown_window=(
|
| 39 |
+
1 * MINUTE
|
| 40 |
+
# how long should we stay up with no requests? Keep it low to minimize credit usage for now.
|
| 41 |
+
),
|
| 42 |
+
timeout=10 * MINUTE, # how long should we wait for container start?
|
| 43 |
+
)
|
| 44 |
+
class VirtualTryModel:
|
| 45 |
+
@modal.enter()
|
| 46 |
+
def enter(self):
|
| 47 |
+
precision = get_precision() # auto-detect precision 'int4' or 'fp4' based GPU
|
| 48 |
+
transformer = NunchakuFluxTransformer2dModel.from_pretrained(
|
| 49 |
+
f"mit-han-lab/nunchaku-flux.1-fill-dev/svdq-{precision}_r32-flux.1-fill-dev.safetensors"
|
| 50 |
+
)
|
| 51 |
+
transformer.set_attention_impl("nunchaku-fp16")
|
| 52 |
+
composed_lora = compose_lora(
|
| 53 |
+
[
|
| 54 |
+
("xiaozaa/catvton-flux-lora-alpha/pytorch_lora_weights.safetensors", 1),
|
| 55 |
+
("ByteDance/Hyper-SD/Hyper-FLUX.1-dev-8steps-lora.safetensors", 0.125),
|
| 56 |
+
]
|
| 57 |
+
)
|
| 58 |
+
transformer.update_lora_params(composed_lora)
|
| 59 |
+
|
| 60 |
+
self.pipe = FluxFillPipeline.from_pretrained(
|
| 61 |
+
"black-forest-labs/FLUX.1-Fill-dev",
|
| 62 |
+
transformer=transformer,
|
| 63 |
+
torch_dtype=torch.bfloat16,
|
| 64 |
+
).to("cuda")
|
| 65 |
+
|
| 66 |
+
self.auto_masker = AutoInpaintMaskGenerator()
|
| 67 |
+
|
| 68 |
+
def get_preprocessors(
|
| 69 |
+
self, input_size: tuple[int, int], target_megapixels: float = 1.0
|
| 70 |
+
) -> tuple[TransformType, TransformType, tuple[int, int]]:
|
| 71 |
+
num_pixels = int(target_megapixels * 1024 * 1024)
|
| 72 |
+
|
| 73 |
+
input_width, input_height = input_size
|
| 74 |
+
|
| 75 |
+
# Resizes the input dimensions to the target number of megapixels while maintaining
|
| 76 |
+
# the aspect ratio and ensuring the new dimensions are multiples of 64.
|
| 77 |
+
scale_by = np.sqrt(num_pixels / (input_height * input_width))
|
| 78 |
+
new_height = int(np.ceil((input_height * scale_by) / 64)) * 64
|
| 79 |
+
new_width = int(np.ceil((input_width * scale_by) / 64)) * 64
|
| 80 |
+
|
| 81 |
+
transform = cast(
|
| 82 |
+
TransformType,
|
| 83 |
+
transforms.Compose(
|
| 84 |
+
[
|
| 85 |
+
transforms.ToTensor(),
|
| 86 |
+
transforms.Resize((new_height, new_width)),
|
| 87 |
+
transforms.Normalize([0.5], [0.5]),
|
| 88 |
+
]
|
| 89 |
+
),
|
| 90 |
+
)
|
| 91 |
+
mask_transform = cast(
|
| 92 |
+
TransformType,
|
| 93 |
+
transforms.Compose(
|
| 94 |
+
[
|
| 95 |
+
transforms.ToTensor(),
|
| 96 |
+
transforms.Resize((new_height, new_width)),
|
| 97 |
+
]
|
| 98 |
+
),
|
| 99 |
+
)
|
| 100 |
+
return transform, mask_transform, (new_width, new_height)
|
| 101 |
+
|
| 102 |
+
@modal.method()
|
| 103 |
+
def try_it(
|
| 104 |
+
self,
|
| 105 |
+
item_to_try: Image.Image,
|
| 106 |
+
image: Image.Image,
|
| 107 |
+
mask: Image.Image | np.ndarray | None = None,
|
| 108 |
+
prompt: str | None = None,
|
| 109 |
+
masking_prompt: str | None = None,
|
| 110 |
+
) -> Image.Image:
|
| 111 |
+
assert mask or masking_prompt, "Either mask or masking_prompt must be provided."
|
| 112 |
+
|
| 113 |
+
preprocessor, mask_preprocessor, output_size = self.get_preprocessors(
|
| 114 |
+
input_size=image.size,
|
| 115 |
+
target_megapixels=0.7, # The image will be stacked which will double the pixel count
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
if mask is None:
|
| 119 |
+
# Generate mask using the auto-masker
|
| 120 |
+
mask = self.auto_masker.generate_mask(
|
| 121 |
+
image,
|
| 122 |
+
prompt=masking_prompt, # type: ignore
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
image_tensor = preprocessor(image.convert("RGB"))
|
| 126 |
+
item_to_try_tensor = preprocessor(item_to_try.convert("RGB"))
|
| 127 |
+
mask_tensor = mask_preprocessor(mask)
|
| 128 |
+
|
| 129 |
+
# Create concatenated images
|
| 130 |
+
inpaint_image = torch.cat(
|
| 131 |
+
[item_to_try_tensor, image_tensor], dim=2
|
| 132 |
+
) # Concatenate along width
|
| 133 |
+
extended_mask = torch.cat([torch.zeros_like(mask_tensor), mask_tensor], dim=2)
|
| 134 |
+
|
| 135 |
+
prompt = prompt or (
|
| 136 |
+
"The pair of images highlights a product and its use in context, high resolution, 4K, 8K;"
|
| 137 |
+
"[IMAGE1] Detailed product shot of the item."
|
| 138 |
+
"[IMAGE2] The same item shown in a realistic lifestyle or usage setting."
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
width, height = output_size
|
| 142 |
+
result = self.pipe(
|
| 143 |
+
height=height,
|
| 144 |
+
width=width * 2,
|
| 145 |
+
image=inpaint_image,
|
| 146 |
+
mask_image=extended_mask,
|
| 147 |
+
num_inference_steps=10,
|
| 148 |
+
generator=torch.Generator("cuda").manual_seed(11),
|
| 149 |
+
max_sequence_length=512,
|
| 150 |
+
guidance_scale=30,
|
| 151 |
+
prompt=prompt,
|
| 152 |
+
).images[0]
|
| 153 |
+
|
| 154 |
+
return result.crop((width, 0, width * 2, height))
|
virtual_try/configs.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import modal
|
| 2 |
+
|
| 3 |
+
image = (
|
| 4 |
+
modal.Image.debian_slim(python_version="3.12")
|
| 5 |
+
.pip_install(
|
| 6 |
+
"torch==2.7.0",
|
| 7 |
+
"torchvision",
|
| 8 |
+
"diffusers==0.33.1",
|
| 9 |
+
"transformers==4.52.4",
|
| 10 |
+
"accelerate==1.7.0",
|
| 11 |
+
"huggingface_hub[hf_transfer]==0.32.4",
|
| 12 |
+
"git+https://github.com/luca-medeiros/lang-segment-anything.git@e9af744d999d85eb4d0bd59a83342ecdc2bd2461",
|
| 13 |
+
"https://github.com/mit-han-lab/nunchaku/releases/download/v0.3.0/nunchaku-0.3.0+torch2.7-cp312-cp312-linux_x86_64.whl#sha256=ed28665515075050c8ef1bacd16845b85aa4335f6c760d6fa716d3b090909d8d7",
|
| 14 |
+
)
|
| 15 |
+
.env({"HF_HUB_ENABLE_HF_TRANSFER": "1"})
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
hf_cache_vol = modal.Volume.from_name("huggingface-cache", create_if_missing=True)
|
| 19 |
+
API_KEY = modal.Secret.from_name("vibe-shopping-secrets", required_keys=["VT_API_KEY"])
|
| 20 |
+
MINUTE = 60
|
| 21 |
+
PORT = 8000
|