Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -25,6 +25,7 @@ from sentence_transformers import SentenceTransformer
|
|
| 25 |
from sklearn.neighbors import NearestNeighbors
|
| 26 |
|
| 27 |
import torch
|
|
|
|
| 28 |
from transformers import (
|
| 29 |
AutoModelForCausalLM,
|
| 30 |
AutoTokenizer,
|
|
@@ -38,7 +39,7 @@ from transformers import (
|
|
| 38 |
EMBED_MODEL = "intfloat/e5-small-v2"
|
| 39 |
LLM_MODEL = "Qwen/Qwen2.5-0.5B-Instruct"
|
| 40 |
|
| 41 |
-
#
|
| 42 |
TRANS_MODEL_ID = "facebook/nllb-200-distilled-600M"
|
| 43 |
|
| 44 |
CHUNK_SIZE = 1500
|
|
@@ -49,14 +50,14 @@ MIN_SECTION_LEN = 300
|
|
| 49 |
# =========================
|
| 50 |
# CLEAN TEXT
|
| 51 |
# =========================
|
| 52 |
-
def clean_text(text):
|
| 53 |
return " ".join(text.replace("\r", "\n").split())
|
| 54 |
|
| 55 |
|
| 56 |
# =========================
|
| 57 |
# PDF INGEST
|
| 58 |
# =========================
|
| 59 |
-
def extract_text_from_pdf(path):
|
| 60 |
reader = PdfReader(path)
|
| 61 |
text = ""
|
| 62 |
for page in reader.pages:
|
|
@@ -65,8 +66,8 @@ def extract_text_from_pdf(path):
|
|
| 65 |
return clean_text(text)
|
| 66 |
|
| 67 |
|
| 68 |
-
def extract_pdf_from_url(url):
|
| 69 |
-
r = requests.get(url, timeout=
|
| 70 |
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
|
| 71 |
tmp.write(r.content)
|
| 72 |
tmp.flush()
|
|
@@ -76,44 +77,100 @@ def extract_pdf_from_url(url):
|
|
| 76 |
|
| 77 |
|
| 78 |
# =========================
|
| 79 |
-
# DOCX / TXT / CSV
|
| 80 |
# =========================
|
| 81 |
-
def extract_docx_from_url(url):
|
| 82 |
-
r = requests.get(url, timeout=
|
| 83 |
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".docx")
|
| 84 |
tmp.write(r.content)
|
| 85 |
tmp.flush()
|
| 86 |
-
|
| 87 |
-
text = "\n".join(p.text for p in
|
| 88 |
tmp.close()
|
| 89 |
return clean_text(text)
|
| 90 |
|
| 91 |
|
| 92 |
-
def extract_txt_from_url(url):
|
| 93 |
-
return clean_text(requests.get(url, timeout=
|
| 94 |
|
| 95 |
|
| 96 |
-
def extract_csv_from_url(url):
|
| 97 |
-
df = pd.read_csv(StringIO(requests.get(url, timeout=
|
| 98 |
return clean_text(df.to_string())
|
| 99 |
|
| 100 |
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
|
| 113 |
# =========================
|
| 114 |
# FILE TYPE DETECTION
|
| 115 |
# =========================
|
| 116 |
-
def detect_filetype(url, headers):
|
| 117 |
u = url.lower()
|
| 118 |
c = headers.get("Content-Type", "").lower()
|
| 119 |
|
|
@@ -138,7 +195,7 @@ SECTION_KEYWORDS = [
|
|
| 138 |
]
|
| 139 |
|
| 140 |
|
| 141 |
-
def is_heading(line):
|
| 142 |
line = line.strip()
|
| 143 |
if not line or len(line) > 120:
|
| 144 |
return False
|
|
@@ -152,7 +209,7 @@ def is_heading(line):
|
|
| 152 |
return False
|
| 153 |
|
| 154 |
|
| 155 |
-
def split_into_sections(text):
|
| 156 |
lines = text.split("\n")
|
| 157 |
sections, title, buf = [], "Document", []
|
| 158 |
|
|
@@ -176,9 +233,10 @@ def split_into_sections(text):
|
|
| 176 |
return sections
|
| 177 |
|
| 178 |
|
| 179 |
-
def chunk_text(text):
|
| 180 |
sections = split_into_sections(text)
|
| 181 |
|
|
|
|
| 182 |
if len(sections) == 1:
|
| 183 |
chunks = []
|
| 184 |
start = 0
|
|
@@ -212,7 +270,7 @@ def chunk_text(text):
|
|
| 212 |
# SEMANTIC SEARCH (KNN)
|
| 213 |
# =========================
|
| 214 |
class SemanticSearch:
|
| 215 |
-
def __init__(self, model):
|
| 216 |
self.embedder = SentenceTransformer(model)
|
| 217 |
self.knn = None
|
| 218 |
self.chunks = []
|
|
@@ -263,12 +321,14 @@ q_model.eval()
|
|
| 263 |
|
| 264 |
|
| 265 |
@torch.no_grad()
|
| 266 |
-
def run_llm(system, user):
|
| 267 |
messages = [
|
| 268 |
{"role": "system", "content": system},
|
| 269 |
{"role": "user", "content": user},
|
| 270 |
]
|
| 271 |
-
text = q_tokenizer.apply_chat_template(
|
|
|
|
|
|
|
| 272 |
inp = q_tokenizer(text, return_tensors="pt").to("cpu")
|
| 273 |
|
| 274 |
out = q_model.generate(
|
|
@@ -307,21 +367,19 @@ LANG_CODES = {
|
|
| 307 |
}
|
| 308 |
|
| 309 |
|
| 310 |
-
def translate_to_indic(text, lang):
|
| 311 |
if lang == "English" or lang == "auto":
|
| 312 |
return text
|
| 313 |
|
| 314 |
try:
|
| 315 |
tgt = LANG_CODES[lang]
|
| 316 |
-
|
| 317 |
inputs = trans_tokenizer(text, return_tensors="pt").to("cpu")
|
| 318 |
output = trans_model.generate(
|
| 319 |
**inputs,
|
| 320 |
forced_bos_token_id=trans_tokenizer.convert_tokens_to_ids(tgt),
|
| 321 |
-
max_new_tokens=300
|
| 322 |
)
|
| 323 |
return trans_tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|
| 324 |
-
|
| 325 |
except Exception as e:
|
| 326 |
print("Translation error:", e)
|
| 327 |
return text
|
|
@@ -409,7 +467,7 @@ def load_url_ui(url, lang):
|
|
| 409 |
return "Enter a URL."
|
| 410 |
|
| 411 |
try:
|
| 412 |
-
head = requests.head(url, allow_redirects=True, timeout=
|
| 413 |
ftype = detect_filetype(url, head.headers)
|
| 414 |
|
| 415 |
if ftype == "pdf":
|
|
@@ -442,8 +500,11 @@ def create_app():
|
|
| 442 |
gr.Markdown("<h1>📘 Multilingual Chat with PDF / URL</h1>")
|
| 443 |
|
| 444 |
lang = gr.Dropdown(
|
| 445 |
-
[
|
| 446 |
-
|
|
|
|
|
|
|
|
|
|
| 447 |
value="auto",
|
| 448 |
label="Answer Language"
|
| 449 |
)
|
|
@@ -464,6 +525,24 @@ def create_app():
|
|
| 464 |
|
| 465 |
gr.Button("Ask").click(answer_question, [q, lang], [a, cits])
|
| 466 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 467 |
return demo
|
| 468 |
|
| 469 |
|
|
|
|
| 25 |
from sklearn.neighbors import NearestNeighbors
|
| 26 |
|
| 27 |
import torch
|
| 28 |
+
import brotli
|
| 29 |
from transformers import (
|
| 30 |
AutoModelForCausalLM,
|
| 31 |
AutoTokenizer,
|
|
|
|
| 39 |
EMBED_MODEL = "intfloat/e5-small-v2"
|
| 40 |
LLM_MODEL = "Qwen/Qwen2.5-0.5B-Instruct"
|
| 41 |
|
| 42 |
+
# Translation model (open, no auth required)
|
| 43 |
TRANS_MODEL_ID = "facebook/nllb-200-distilled-600M"
|
| 44 |
|
| 45 |
CHUNK_SIZE = 1500
|
|
|
|
| 50 |
# =========================
|
| 51 |
# CLEAN TEXT
|
| 52 |
# =========================
|
| 53 |
+
def clean_text(text: str) -> str:
|
| 54 |
return " ".join(text.replace("\r", "\n").split())
|
| 55 |
|
| 56 |
|
| 57 |
# =========================
|
| 58 |
# PDF INGEST
|
| 59 |
# =========================
|
| 60 |
+
def extract_text_from_pdf(path: str) -> str:
|
| 61 |
reader = PdfReader(path)
|
| 62 |
text = ""
|
| 63 |
for page in reader.pages:
|
|
|
|
| 66 |
return clean_text(text)
|
| 67 |
|
| 68 |
|
| 69 |
+
def extract_pdf_from_url(url: str) -> str:
|
| 70 |
+
r = requests.get(url, timeout=20)
|
| 71 |
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
|
| 72 |
tmp.write(r.content)
|
| 73 |
tmp.flush()
|
|
|
|
| 77 |
|
| 78 |
|
| 79 |
# =========================
|
| 80 |
+
# DOCX / TXT / CSV INGEST
|
| 81 |
# =========================
|
| 82 |
+
def extract_docx_from_url(url: str) -> str:
|
| 83 |
+
r = requests.get(url, timeout=20)
|
| 84 |
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".docx")
|
| 85 |
tmp.write(r.content)
|
| 86 |
tmp.flush()
|
| 87 |
+
document = docx.Document(tmp.name)
|
| 88 |
+
text = "\n".join(p.text for p in document.paragraphs)
|
| 89 |
tmp.close()
|
| 90 |
return clean_text(text)
|
| 91 |
|
| 92 |
|
| 93 |
+
def extract_txt_from_url(url: str) -> str:
|
| 94 |
+
return clean_text(requests.get(url, timeout=20).text)
|
| 95 |
|
| 96 |
|
| 97 |
+
def extract_csv_from_url(url: str) -> str:
|
| 98 |
+
df = pd.read_csv(StringIO(requests.get(url, timeout=20).text))
|
| 99 |
return clean_text(df.to_string())
|
| 100 |
|
| 101 |
|
| 102 |
+
# =========================
|
| 103 |
+
# ROBUST HTML + IN-PAGE PDF HANDLER
|
| 104 |
+
# =========================
|
| 105 |
+
def extract_html_from_url(url: str) -> str:
|
| 106 |
+
"""
|
| 107 |
+
Robust extractor for research sites:
|
| 108 |
+
- Handles brotli (br) encoding
|
| 109 |
+
- Detects <a href="...pdf"> links inside HTML and downloads PDF
|
| 110 |
+
- Falls back to cleaned HTML text
|
| 111 |
+
"""
|
| 112 |
+
headers = {
|
| 113 |
+
"User-Agent": (
|
| 114 |
+
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) "
|
| 115 |
+
"AppleWebKit/537.36 (KHTML, like Gecko) "
|
| 116 |
+
"Chrome/120.0 Safari/537.36"
|
| 117 |
+
),
|
| 118 |
+
"Accept": "*/*",
|
| 119 |
+
"Accept-Encoding": "gzip, deflate, br",
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
# 1) Fetch HTML
|
| 123 |
+
try:
|
| 124 |
+
resp = requests.get(url, headers=headers, timeout=20)
|
| 125 |
+
|
| 126 |
+
if resp.headers.get("Content-Encoding") == "br":
|
| 127 |
+
html = brotli.decompress(resp.content).decode("utf-8", errors="ignore")
|
| 128 |
+
else:
|
| 129 |
+
html = resp.text
|
| 130 |
+
except Exception as e:
|
| 131 |
+
return f"Error loading HTML: {e}"
|
| 132 |
+
|
| 133 |
+
soup = BeautifulSoup(html, "html.parser")
|
| 134 |
+
|
| 135 |
+
# 2) Try to find a PDF link inside the page
|
| 136 |
+
pdf_links = [a["href"] for a in soup.find_all("a", href=True)
|
| 137 |
+
if ".pdf" in a["href"].lower()]
|
| 138 |
|
| 139 |
+
if pdf_links:
|
| 140 |
+
pdf_url = pdf_links[0]
|
| 141 |
+
if pdf_url.startswith("/"):
|
| 142 |
+
from urllib.parse import urljoin
|
| 143 |
+
pdf_url = urljoin(url, pdf_url)
|
| 144 |
+
|
| 145 |
+
try:
|
| 146 |
+
pdf_resp = requests.get(pdf_url, headers=headers, timeout=20)
|
| 147 |
+
if pdf_resp.status_code == 200:
|
| 148 |
+
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
|
| 149 |
+
tmp.write(pdf_resp.content)
|
| 150 |
+
tmp.flush()
|
| 151 |
+
text = extract_text_from_pdf(tmp.name)
|
| 152 |
+
tmp.close()
|
| 153 |
+
return text
|
| 154 |
+
except Exception:
|
| 155 |
+
# If PDF fails, fall back to HTML extraction
|
| 156 |
+
pass
|
| 157 |
+
|
| 158 |
+
# 3) Try trafilatura for main text
|
| 159 |
+
extracted = trafilatura.extract(html)
|
| 160 |
+
if extracted and len(extracted) > 200:
|
| 161 |
+
return clean_text(extracted)
|
| 162 |
+
|
| 163 |
+
# 4) Raw HTML fallback
|
| 164 |
+
for bad in soup(["script", "style", "noscript"]):
|
| 165 |
+
bad.decompose()
|
| 166 |
+
|
| 167 |
+
return clean_text(soup.get_text(" ", strip=True))
|
| 168 |
|
| 169 |
|
| 170 |
# =========================
|
| 171 |
# FILE TYPE DETECTION
|
| 172 |
# =========================
|
| 173 |
+
def detect_filetype(url: str, headers) -> str:
|
| 174 |
u = url.lower()
|
| 175 |
c = headers.get("Content-Type", "").lower()
|
| 176 |
|
|
|
|
| 195 |
]
|
| 196 |
|
| 197 |
|
| 198 |
+
def is_heading(line: str) -> bool:
|
| 199 |
line = line.strip()
|
| 200 |
if not line or len(line) > 120:
|
| 201 |
return False
|
|
|
|
| 209 |
return False
|
| 210 |
|
| 211 |
|
| 212 |
+
def split_into_sections(text: str):
|
| 213 |
lines = text.split("\n")
|
| 214 |
sections, title, buf = [], "Document", []
|
| 215 |
|
|
|
|
| 233 |
return sections
|
| 234 |
|
| 235 |
|
| 236 |
+
def chunk_text(text: str):
|
| 237 |
sections = split_into_sections(text)
|
| 238 |
|
| 239 |
+
# fallback: sliding window if no good sections
|
| 240 |
if len(sections) == 1:
|
| 241 |
chunks = []
|
| 242 |
start = 0
|
|
|
|
| 270 |
# SEMANTIC SEARCH (KNN)
|
| 271 |
# =========================
|
| 272 |
class SemanticSearch:
|
| 273 |
+
def __init__(self, model: str):
|
| 274 |
self.embedder = SentenceTransformer(model)
|
| 275 |
self.knn = None
|
| 276 |
self.chunks = []
|
|
|
|
| 321 |
|
| 322 |
|
| 323 |
@torch.no_grad()
|
| 324 |
+
def run_llm(system: str, user: str) -> str:
|
| 325 |
messages = [
|
| 326 |
{"role": "system", "content": system},
|
| 327 |
{"role": "user", "content": user},
|
| 328 |
]
|
| 329 |
+
text = q_tokenizer.apply_chat_template(
|
| 330 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 331 |
+
)
|
| 332 |
inp = q_tokenizer(text, return_tensors="pt").to("cpu")
|
| 333 |
|
| 334 |
out = q_model.generate(
|
|
|
|
| 367 |
}
|
| 368 |
|
| 369 |
|
| 370 |
+
def translate_to_indic(text: str, lang: str) -> str:
|
| 371 |
if lang == "English" or lang == "auto":
|
| 372 |
return text
|
| 373 |
|
| 374 |
try:
|
| 375 |
tgt = LANG_CODES[lang]
|
|
|
|
| 376 |
inputs = trans_tokenizer(text, return_tensors="pt").to("cpu")
|
| 377 |
output = trans_model.generate(
|
| 378 |
**inputs,
|
| 379 |
forced_bos_token_id=trans_tokenizer.convert_tokens_to_ids(tgt),
|
| 380 |
+
max_new_tokens=300,
|
| 381 |
)
|
| 382 |
return trans_tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|
|
|
|
| 383 |
except Exception as e:
|
| 384 |
print("Translation error:", e)
|
| 385 |
return text
|
|
|
|
| 467 |
return "Enter a URL."
|
| 468 |
|
| 469 |
try:
|
| 470 |
+
head = requests.head(url, allow_redirects=True, timeout=20)
|
| 471 |
ftype = detect_filetype(url, head.headers)
|
| 472 |
|
| 473 |
if ftype == "pdf":
|
|
|
|
| 500 |
gr.Markdown("<h1>📘 Multilingual Chat with PDF / URL</h1>")
|
| 501 |
|
| 502 |
lang = gr.Dropdown(
|
| 503 |
+
[
|
| 504 |
+
"auto", "English", "Hindi", "Telugu", "Tamil",
|
| 505 |
+
"Kannada", "Malayalam", "Bengali", "Marathi",
|
| 506 |
+
"Gujarati", "Odia", "Punjabi", "Assamese"
|
| 507 |
+
],
|
| 508 |
value="auto",
|
| 509 |
label="Answer Language"
|
| 510 |
)
|
|
|
|
| 525 |
|
| 526 |
gr.Button("Ask").click(answer_question, [q, lang], [a, cits])
|
| 527 |
|
| 528 |
+
# Example Questions
|
| 529 |
+
gr.Markdown("### ✨ Example Questions")
|
| 530 |
+
|
| 531 |
+
with gr.Row():
|
| 532 |
+
ex1 = gr.Button("Give a summary of this document")
|
| 533 |
+
ex2 = gr.Button("What are the key findings?")
|
| 534 |
+
ex3 = gr.Button("Explain the methodology used")
|
| 535 |
+
ex4 = gr.Button("List the main conclusions")
|
| 536 |
+
ex5 = gr.Button("Explain in simple terms")
|
| 537 |
+
ex6 = gr.Button("What is the significance of this study?")
|
| 538 |
+
|
| 539 |
+
ex1.click(lambda: "Give a summary of this document", None, q)
|
| 540 |
+
ex2.click(lambda: "What are the key findings?", None, q)
|
| 541 |
+
ex3.click(lambda: "Explain the methodology used", None, q)
|
| 542 |
+
ex4.click(lambda: "List the main conclusions", None, q)
|
| 543 |
+
ex5.click(lambda: "Explain this in simple terms", None, q)
|
| 544 |
+
ex6.click(lambda: "What is the significance of this study?", None, q)
|
| 545 |
+
|
| 546 |
return demo
|
| 547 |
|
| 548 |
|