Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
-
#
|
| 2 |
# GLOBAL CACHE
|
| 3 |
-
#
|
| 4 |
CACHE = {
|
| 5 |
"last_text_hash": None,
|
| 6 |
"chunks": None,
|
|
@@ -32,11 +32,13 @@ from transformers import (
|
|
| 32 |
M2M100ForConditionalGeneration,
|
| 33 |
)
|
| 34 |
|
| 35 |
-
#
|
| 36 |
# CONFIG
|
| 37 |
-
#
|
| 38 |
EMBED_MODEL = "intfloat/e5-small-v2"
|
| 39 |
LLM_MODEL = "Qwen/Qwen2.5-0.5B-Instruct"
|
|
|
|
|
|
|
| 40 |
TRANS_MODEL_ID = "facebook/nllb-200-distilled-600M"
|
| 41 |
|
| 42 |
CHUNK_SIZE = 1500
|
|
@@ -44,103 +46,73 @@ CHUNK_OVERLAP = 300
|
|
| 44 |
MIN_SECTION_LEN = 300
|
| 45 |
|
| 46 |
|
| 47 |
-
#
|
| 48 |
# CLEAN TEXT
|
| 49 |
-
#
|
| 50 |
def clean_text(text):
|
| 51 |
return " ".join(text.replace("\r", "\n").split())
|
| 52 |
|
| 53 |
|
| 54 |
-
#
|
| 55 |
-
# SAFE HTML DECODER (Brotli-proof)
|
| 56 |
-
# =========================================================
|
| 57 |
-
def safe_decode_content(url, resp):
|
| 58 |
-
"""Decode HTML safely. If Brotli fails, retry without compression."""
|
| 59 |
-
enc = resp.headers.get("Content-Encoding", "").lower()
|
| 60 |
-
|
| 61 |
-
try:
|
| 62 |
-
if "br" in enc:
|
| 63 |
-
import brotli
|
| 64 |
-
try:
|
| 65 |
-
# Try standard brotli decode
|
| 66 |
-
return brotli.decompress(resp.content).decode("utf-8", errors="ignore")
|
| 67 |
-
except Exception:
|
| 68 |
-
# Retry plain text request
|
| 69 |
-
retry = requests.get(
|
| 70 |
-
url,
|
| 71 |
-
headers={
|
| 72 |
-
"User-Agent": "Mozilla/5.0",
|
| 73 |
-
"Accept-Encoding": "identity"
|
| 74 |
-
},
|
| 75 |
-
timeout=20,
|
| 76 |
-
)
|
| 77 |
-
return retry.text
|
| 78 |
-
|
| 79 |
-
return resp.text
|
| 80 |
-
|
| 81 |
-
except Exception as e:
|
| 82 |
-
raise RuntimeError(f"Decompression error: {e}")
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
# =========================================================
|
| 86 |
# PDF INGEST
|
| 87 |
-
#
|
| 88 |
def extract_text_from_pdf(path):
|
| 89 |
reader = PdfReader(path)
|
| 90 |
text = ""
|
| 91 |
for page in reader.pages:
|
| 92 |
-
|
|
|
|
| 93 |
return clean_text(text)
|
| 94 |
|
| 95 |
|
| 96 |
def extract_pdf_from_url(url):
|
| 97 |
-
r = requests.get(url, timeout=
|
| 98 |
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
|
| 99 |
tmp.write(r.content)
|
| 100 |
tmp.flush()
|
| 101 |
-
|
| 102 |
tmp.close()
|
| 103 |
-
return
|
| 104 |
|
| 105 |
|
| 106 |
-
#
|
| 107 |
-
#
|
| 108 |
-
#
|
| 109 |
def extract_docx_from_url(url):
|
| 110 |
-
r = requests.get(url, timeout=
|
| 111 |
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".docx")
|
| 112 |
tmp.write(r.content)
|
| 113 |
tmp.flush()
|
| 114 |
doc = docx.Document(tmp.name)
|
|
|
|
| 115 |
tmp.close()
|
| 116 |
-
return clean_text(
|
| 117 |
|
| 118 |
|
| 119 |
def extract_txt_from_url(url):
|
| 120 |
-
return clean_text(requests.get(url, timeout=
|
| 121 |
|
| 122 |
|
| 123 |
def extract_csv_from_url(url):
|
| 124 |
-
df = pd.read_csv(StringIO(requests.get(url, timeout=
|
| 125 |
return clean_text(df.to_string())
|
| 126 |
|
| 127 |
|
| 128 |
def extract_html_from_url(url):
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
soup = BeautifulSoup(html, "html.parser")
|
| 138 |
return clean_text(soup.get_text(separator=" "))
|
| 139 |
|
| 140 |
|
| 141 |
-
#
|
| 142 |
# FILE TYPE DETECTION
|
| 143 |
-
#
|
| 144 |
def detect_filetype(url, headers):
|
| 145 |
u = url.lower()
|
| 146 |
c = headers.get("Content-Type", "").lower()
|
|
@@ -156,13 +128,13 @@ def detect_filetype(url, headers):
|
|
| 156 |
return "html"
|
| 157 |
|
| 158 |
|
| 159 |
-
#
|
| 160 |
# SECTION-AWARE CHUNKING
|
| 161 |
-
#
|
| 162 |
SECTION_KEYWORDS = [
|
| 163 |
-
"
|
| 164 |
-
"
|
| 165 |
-
"
|
| 166 |
]
|
| 167 |
|
| 168 |
|
|
@@ -182,9 +154,7 @@ def is_heading(line):
|
|
| 182 |
|
| 183 |
def split_into_sections(text):
|
| 184 |
lines = text.split("\n")
|
| 185 |
-
sections = []
|
| 186 |
-
buf = []
|
| 187 |
-
title = "Document"
|
| 188 |
|
| 189 |
for line in lines:
|
| 190 |
if is_heading(line):
|
|
@@ -196,37 +166,51 @@ def split_into_sections(text):
|
|
| 196 |
buf.append(line)
|
| 197 |
|
| 198 |
if buf:
|
| 199 |
-
|
|
|
|
|
|
|
| 200 |
|
| 201 |
-
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
|
| 204 |
def chunk_text(text):
|
| 205 |
sections = split_into_sections(text)
|
| 206 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
chunks = []
|
| 208 |
for _, body in sections:
|
| 209 |
paragraphs = [p.strip() for p in re.split(r"\n\s*\n", body) if p.strip()]
|
| 210 |
-
|
| 211 |
|
| 212 |
for para in paragraphs:
|
| 213 |
-
if not
|
| 214 |
-
|
| 215 |
-
elif len(
|
| 216 |
-
|
| 217 |
else:
|
| 218 |
-
chunks.append(
|
| 219 |
-
|
| 220 |
|
| 221 |
-
if
|
| 222 |
-
chunks.append(
|
| 223 |
|
| 224 |
return chunks
|
| 225 |
|
| 226 |
|
| 227 |
-
#
|
| 228 |
-
# SEMANTIC SEARCH
|
| 229 |
-
#
|
| 230 |
class SemanticSearch:
|
| 231 |
def __init__(self, model):
|
| 232 |
self.embedder = SentenceTransformer(model)
|
|
@@ -240,10 +224,12 @@ class SemanticSearch:
|
|
| 240 |
h = hashlib.md5("".join(chunks).encode()).hexdigest()
|
| 241 |
|
| 242 |
if CACHE["last_text_hash"] == h:
|
|
|
|
| 243 |
self.chunks = CACHE["chunks"]
|
| 244 |
self.knn = CACHE["knn"]
|
| 245 |
return
|
| 246 |
|
|
|
|
| 247 |
self.chunks = chunks
|
| 248 |
emb = self.embedder.encode(chunks, convert_to_numpy=True)
|
| 249 |
|
|
@@ -266,10 +252,11 @@ class SemanticSearch:
|
|
| 266 |
vs = None
|
| 267 |
|
| 268 |
|
| 269 |
-
#
|
| 270 |
-
# LOAD
|
| 271 |
-
#
|
| 272 |
print("Loading Qwen 0.5B…")
|
|
|
|
| 273 |
q_tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL)
|
| 274 |
q_model = AutoModelForCausalLM.from_pretrained(LLM_MODEL).to("cpu")
|
| 275 |
q_model.eval()
|
|
@@ -292,15 +279,15 @@ def run_llm(system, user):
|
|
| 292 |
temperature=0.6,
|
| 293 |
eos_token_id=q_tokenizer.eos_token_id,
|
| 294 |
)
|
| 295 |
-
|
| 296 |
gen = out[0][inp["input_ids"].shape[1]:]
|
| 297 |
return q_tokenizer.decode(gen, skip_special_tokens=True).strip()
|
| 298 |
|
| 299 |
|
| 300 |
-
#
|
| 301 |
-
#
|
| 302 |
-
#
|
| 303 |
-
print("Loading NLLB translator…")
|
|
|
|
| 304 |
trans_tokenizer = NllbTokenizer.from_pretrained(TRANS_MODEL_ID)
|
| 305 |
trans_model = M2M100ForConditionalGeneration.from_pretrained(TRANS_MODEL_ID).to("cpu")
|
| 306 |
|
|
@@ -326,20 +313,23 @@ def translate_to_indic(text, lang):
|
|
| 326 |
|
| 327 |
try:
|
| 328 |
tgt = LANG_CODES[lang]
|
|
|
|
| 329 |
inputs = trans_tokenizer(text, return_tensors="pt").to("cpu")
|
| 330 |
output = trans_model.generate(
|
| 331 |
**inputs,
|
| 332 |
forced_bos_token_id=trans_tokenizer.convert_tokens_to_ids(tgt),
|
| 333 |
-
max_new_tokens=300
|
| 334 |
)
|
| 335 |
return trans_tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|
| 336 |
-
|
|
|
|
|
|
|
| 337 |
return text
|
| 338 |
|
| 339 |
|
| 340 |
-
#
|
| 341 |
# RAG PROMPT
|
| 342 |
-
#
|
| 343 |
def build_prompt(question, retrieved):
|
| 344 |
ctx = "\n\n---\n\n".join([c for c, _ in retrieved])
|
| 345 |
return f"""
|
|
@@ -351,8 +341,8 @@ Follow these rules:
|
|
| 351 |
1. Use ONLY the context. Do not add external knowledge.
|
| 352 |
2. If the context does not contain the answer, say:
|
| 353 |
"I don't know based on this document."
|
| 354 |
-
3. When possible,
|
| 355 |
-
4.
|
| 356 |
|
| 357 |
CONTEXT:
|
| 358 |
{ctx}
|
|
@@ -360,13 +350,13 @@ CONTEXT:
|
|
| 360 |
QUESTION:
|
| 361 |
{question}
|
| 362 |
|
| 363 |
-
Write your answer below:
|
| 364 |
""".strip()
|
| 365 |
|
| 366 |
|
| 367 |
-
#
|
| 368 |
# SOURCE DISPLAY
|
| 369 |
-
#
|
| 370 |
def highlight_sources(retrieved):
|
| 371 |
html = "<h4>📚 Source Passages</h4>"
|
| 372 |
for i, (chunk, score) in enumerate(retrieved):
|
|
@@ -379,9 +369,9 @@ def highlight_sources(retrieved):
|
|
| 379 |
return html
|
| 380 |
|
| 381 |
|
| 382 |
-
#
|
| 383 |
# ANSWER FUNCTION
|
| 384 |
-
#
|
| 385 |
def answer_question(q, lang):
|
| 386 |
global vs
|
| 387 |
if vs is None:
|
|
@@ -396,9 +386,9 @@ def answer_question(q, lang):
|
|
| 396 |
return final, highlight_sources(retrieved)
|
| 397 |
|
| 398 |
|
| 399 |
-
#
|
| 400 |
# LOADERS
|
| 401 |
-
#
|
| 402 |
def load_pdf_ui(file, lang):
|
| 403 |
global vs
|
| 404 |
if not file:
|
|
@@ -419,7 +409,7 @@ def load_url_ui(url, lang):
|
|
| 419 |
return "Enter a URL."
|
| 420 |
|
| 421 |
try:
|
| 422 |
-
head = requests.head(url, allow_redirects=True, timeout=
|
| 423 |
ftype = detect_filetype(url, head.headers)
|
| 424 |
|
| 425 |
if ftype == "pdf":
|
|
@@ -443,20 +433,17 @@ def load_url_ui(url, lang):
|
|
| 443 |
return f"URL loaded with {len(chunks)} chunks."
|
| 444 |
|
| 445 |
|
| 446 |
-
#
|
| 447 |
# UI
|
| 448 |
-
#
|
| 449 |
def create_app():
|
| 450 |
with gr.Blocks() as demo:
|
| 451 |
|
| 452 |
gr.Markdown("<h1>📘 Multilingual Chat with PDF / URL</h1>")
|
| 453 |
|
| 454 |
lang = gr.Dropdown(
|
| 455 |
-
[
|
| 456 |
-
|
| 457 |
-
"Malayalam", "Bengali", "Marathi", "Gujarati",
|
| 458 |
-
"Odia", "Punjabi", "Assamese",
|
| 459 |
-
],
|
| 460 |
value="auto",
|
| 461 |
label="Answer Language"
|
| 462 |
)
|
|
@@ -477,13 +464,6 @@ def create_app():
|
|
| 477 |
|
| 478 |
gr.Button("Ask").click(answer_question, [q, lang], [a, cits])
|
| 479 |
|
| 480 |
-
gr.Markdown("### ✨ Example Questions")
|
| 481 |
-
with gr.Row():
|
| 482 |
-
gr.Button("Summarize the document").click(lambda: "Summarize the document", None, q)
|
| 483 |
-
gr.Button("What are the key findings?").click(lambda: "What are the key findings?", None, q)
|
| 484 |
-
gr.Button("Explain the methodology").click(lambda: "Explain the methodology used", None, q)
|
| 485 |
-
gr.Button("What conclusions are given?").click(lambda: "What are the conclusions?", None, q)
|
| 486 |
-
|
| 487 |
return demo
|
| 488 |
|
| 489 |
|
|
|
|
| 1 |
+
# =========================
|
| 2 |
# GLOBAL CACHE
|
| 3 |
+
# =========================
|
| 4 |
CACHE = {
|
| 5 |
"last_text_hash": None,
|
| 6 |
"chunks": None,
|
|
|
|
| 32 |
M2M100ForConditionalGeneration,
|
| 33 |
)
|
| 34 |
|
| 35 |
+
# =========================
|
| 36 |
# CONFIG
|
| 37 |
+
# =========================
|
| 38 |
EMBED_MODEL = "intfloat/e5-small-v2"
|
| 39 |
LLM_MODEL = "Qwen/Qwen2.5-0.5B-Instruct"
|
| 40 |
+
|
| 41 |
+
# ⭐ Fully open-source translation model (works everywhere)
|
| 42 |
TRANS_MODEL_ID = "facebook/nllb-200-distilled-600M"
|
| 43 |
|
| 44 |
CHUNK_SIZE = 1500
|
|
|
|
| 46 |
MIN_SECTION_LEN = 300
|
| 47 |
|
| 48 |
|
| 49 |
+
# =========================
|
| 50 |
# CLEAN TEXT
|
| 51 |
+
# =========================
|
| 52 |
def clean_text(text):
|
| 53 |
return " ".join(text.replace("\r", "\n").split())
|
| 54 |
|
| 55 |
|
| 56 |
+
# =========================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
# PDF INGEST
|
| 58 |
+
# =========================
|
| 59 |
def extract_text_from_pdf(path):
|
| 60 |
reader = PdfReader(path)
|
| 61 |
text = ""
|
| 62 |
for page in reader.pages:
|
| 63 |
+
page_text = page.extract_text() or ""
|
| 64 |
+
text += "\n" + page_text
|
| 65 |
return clean_text(text)
|
| 66 |
|
| 67 |
|
| 68 |
def extract_pdf_from_url(url):
|
| 69 |
+
r = requests.get(url, timeout=10)
|
| 70 |
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
|
| 71 |
tmp.write(r.content)
|
| 72 |
tmp.flush()
|
| 73 |
+
txt = extract_text_from_pdf(tmp.name)
|
| 74 |
tmp.close()
|
| 75 |
+
return txt
|
| 76 |
|
| 77 |
|
| 78 |
+
# =========================
|
| 79 |
+
# DOCX / TXT / CSV / HTML INGEST
|
| 80 |
+
# =========================
|
| 81 |
def extract_docx_from_url(url):
|
| 82 |
+
r = requests.get(url, timeout=10)
|
| 83 |
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".docx")
|
| 84 |
tmp.write(r.content)
|
| 85 |
tmp.flush()
|
| 86 |
doc = docx.Document(tmp.name)
|
| 87 |
+
text = "\n".join(p.text for p in doc.paragraphs)
|
| 88 |
tmp.close()
|
| 89 |
+
return clean_text(text)
|
| 90 |
|
| 91 |
|
| 92 |
def extract_txt_from_url(url):
|
| 93 |
+
return clean_text(requests.get(url, timeout=10).text)
|
| 94 |
|
| 95 |
|
| 96 |
def extract_csv_from_url(url):
|
| 97 |
+
df = pd.read_csv(StringIO(requests.get(url, timeout=10).text))
|
| 98 |
return clean_text(df.to_string())
|
| 99 |
|
| 100 |
|
| 101 |
def extract_html_from_url(url):
|
| 102 |
+
downloaded = trafilatura.fetch_url(url)
|
| 103 |
+
if downloaded:
|
| 104 |
+
extracted = trafilatura.extract(downloaded)
|
| 105 |
+
if extracted:
|
| 106 |
+
return clean_text(extracted)
|
| 107 |
+
|
| 108 |
+
resp = requests.get(url, timeout=10)
|
| 109 |
+
soup = BeautifulSoup(resp.text, "html.parser")
|
|
|
|
| 110 |
return clean_text(soup.get_text(separator=" "))
|
| 111 |
|
| 112 |
|
| 113 |
+
# =========================
|
| 114 |
# FILE TYPE DETECTION
|
| 115 |
+
# =========================
|
| 116 |
def detect_filetype(url, headers):
|
| 117 |
u = url.lower()
|
| 118 |
c = headers.get("Content-Type", "").lower()
|
|
|
|
| 128 |
return "html"
|
| 129 |
|
| 130 |
|
| 131 |
+
# =========================
|
| 132 |
# SECTION-AWARE CHUNKING
|
| 133 |
+
# =========================
|
| 134 |
SECTION_KEYWORDS = [
|
| 135 |
+
"introduction", "method", "methodology", "materials and methods",
|
| 136 |
+
"results", "discussion", "conclusion", "conclusions", "abstract",
|
| 137 |
+
"background", "analysis"
|
| 138 |
]
|
| 139 |
|
| 140 |
|
|
|
|
| 154 |
|
| 155 |
def split_into_sections(text):
|
| 156 |
lines = text.split("\n")
|
| 157 |
+
sections, title, buf = [], "Document", []
|
|
|
|
|
|
|
| 158 |
|
| 159 |
for line in lines:
|
| 160 |
if is_heading(line):
|
|
|
|
| 166 |
buf.append(line)
|
| 167 |
|
| 168 |
if buf:
|
| 169 |
+
body = "\n".join(buf)
|
| 170 |
+
if len(body) > MIN_SECTION_LEN:
|
| 171 |
+
sections.append((title, body))
|
| 172 |
|
| 173 |
+
if not sections:
|
| 174 |
+
return [("Document", text)]
|
| 175 |
+
|
| 176 |
+
return sections
|
| 177 |
|
| 178 |
|
| 179 |
def chunk_text(text):
|
| 180 |
sections = split_into_sections(text)
|
| 181 |
|
| 182 |
+
if len(sections) == 1:
|
| 183 |
+
chunks = []
|
| 184 |
+
start = 0
|
| 185 |
+
while start < len(text):
|
| 186 |
+
end = min(start + CHUNK_SIZE, len(text))
|
| 187 |
+
chunks.append(text[start:end])
|
| 188 |
+
start += CHUNK_SIZE - CHUNK_OVERLAP
|
| 189 |
+
return chunks
|
| 190 |
+
|
| 191 |
chunks = []
|
| 192 |
for _, body in sections:
|
| 193 |
paragraphs = [p.strip() for p in re.split(r"\n\s*\n", body) if p.strip()]
|
| 194 |
+
current = ""
|
| 195 |
|
| 196 |
for para in paragraphs:
|
| 197 |
+
if not current:
|
| 198 |
+
current = para
|
| 199 |
+
elif len(current) + len(para) + 2 <= CHUNK_SIZE:
|
| 200 |
+
current += "\n\n" + para
|
| 201 |
else:
|
| 202 |
+
chunks.append(current)
|
| 203 |
+
current = para
|
| 204 |
|
| 205 |
+
if current:
|
| 206 |
+
chunks.append(current)
|
| 207 |
|
| 208 |
return chunks
|
| 209 |
|
| 210 |
|
| 211 |
+
# =========================
|
| 212 |
+
# SEMANTIC SEARCH (KNN)
|
| 213 |
+
# =========================
|
| 214 |
class SemanticSearch:
|
| 215 |
def __init__(self, model):
|
| 216 |
self.embedder = SentenceTransformer(model)
|
|
|
|
| 224 |
h = hashlib.md5("".join(chunks).encode()).hexdigest()
|
| 225 |
|
| 226 |
if CACHE["last_text_hash"] == h:
|
| 227 |
+
print("⚡ Using cached embeddings")
|
| 228 |
self.chunks = CACHE["chunks"]
|
| 229 |
self.knn = CACHE["knn"]
|
| 230 |
return
|
| 231 |
|
| 232 |
+
print("➡ Rebuilding embeddings…")
|
| 233 |
self.chunks = chunks
|
| 234 |
emb = self.embedder.encode(chunks, convert_to_numpy=True)
|
| 235 |
|
|
|
|
| 252 |
vs = None
|
| 253 |
|
| 254 |
|
| 255 |
+
# =========================
|
| 256 |
+
# LOAD QWEN FOR RAG
|
| 257 |
+
# =========================
|
| 258 |
print("Loading Qwen 0.5B…")
|
| 259 |
+
|
| 260 |
q_tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL)
|
| 261 |
q_model = AutoModelForCausalLM.from_pretrained(LLM_MODEL).to("cpu")
|
| 262 |
q_model.eval()
|
|
|
|
| 279 |
temperature=0.6,
|
| 280 |
eos_token_id=q_tokenizer.eos_token_id,
|
| 281 |
)
|
|
|
|
| 282 |
gen = out[0][inp["input_ids"].shape[1]:]
|
| 283 |
return q_tokenizer.decode(gen, skip_special_tokens=True).strip()
|
| 284 |
|
| 285 |
|
| 286 |
+
# =========================
|
| 287 |
+
# LOAD NLLB TRANSLATOR
|
| 288 |
+
# =========================
|
| 289 |
+
print("Loading NLLB-200 translator…")
|
| 290 |
+
|
| 291 |
trans_tokenizer = NllbTokenizer.from_pretrained(TRANS_MODEL_ID)
|
| 292 |
trans_model = M2M100ForConditionalGeneration.from_pretrained(TRANS_MODEL_ID).to("cpu")
|
| 293 |
|
|
|
|
| 313 |
|
| 314 |
try:
|
| 315 |
tgt = LANG_CODES[lang]
|
| 316 |
+
|
| 317 |
inputs = trans_tokenizer(text, return_tensors="pt").to("cpu")
|
| 318 |
output = trans_model.generate(
|
| 319 |
**inputs,
|
| 320 |
forced_bos_token_id=trans_tokenizer.convert_tokens_to_ids(tgt),
|
| 321 |
+
max_new_tokens=300
|
| 322 |
)
|
| 323 |
return trans_tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|
| 324 |
+
|
| 325 |
+
except Exception as e:
|
| 326 |
+
print("Translation error:", e)
|
| 327 |
return text
|
| 328 |
|
| 329 |
|
| 330 |
+
# =========================
|
| 331 |
# RAG PROMPT
|
| 332 |
+
# =========================
|
| 333 |
def build_prompt(question, retrieved):
|
| 334 |
ctx = "\n\n---\n\n".join([c for c, _ in retrieved])
|
| 335 |
return f"""
|
|
|
|
| 341 |
1. Use ONLY the context. Do not add external knowledge.
|
| 342 |
2. If the context does not contain the answer, say:
|
| 343 |
"I don't know based on this document."
|
| 344 |
+
3. When possible, structure your answer into short, clear points.
|
| 345 |
+
4. Keep the answer concise, factual, and in English.
|
| 346 |
|
| 347 |
CONTEXT:
|
| 348 |
{ctx}
|
|
|
|
| 350 |
QUESTION:
|
| 351 |
{question}
|
| 352 |
|
| 353 |
+
Write your answer below (in English):
|
| 354 |
""".strip()
|
| 355 |
|
| 356 |
|
| 357 |
+
# =========================
|
| 358 |
# SOURCE DISPLAY
|
| 359 |
+
# =========================
|
| 360 |
def highlight_sources(retrieved):
|
| 361 |
html = "<h4>📚 Source Passages</h4>"
|
| 362 |
for i, (chunk, score) in enumerate(retrieved):
|
|
|
|
| 369 |
return html
|
| 370 |
|
| 371 |
|
| 372 |
+
# =========================
|
| 373 |
# ANSWER FUNCTION
|
| 374 |
+
# =========================
|
| 375 |
def answer_question(q, lang):
|
| 376 |
global vs
|
| 377 |
if vs is None:
|
|
|
|
| 386 |
return final, highlight_sources(retrieved)
|
| 387 |
|
| 388 |
|
| 389 |
+
# =========================
|
| 390 |
# LOADERS
|
| 391 |
+
# =========================
|
| 392 |
def load_pdf_ui(file, lang):
|
| 393 |
global vs
|
| 394 |
if not file:
|
|
|
|
| 409 |
return "Enter a URL."
|
| 410 |
|
| 411 |
try:
|
| 412 |
+
head = requests.head(url, allow_redirects=True, timeout=10)
|
| 413 |
ftype = detect_filetype(url, head.headers)
|
| 414 |
|
| 415 |
if ftype == "pdf":
|
|
|
|
| 433 |
return f"URL loaded with {len(chunks)} chunks."
|
| 434 |
|
| 435 |
|
| 436 |
+
# =========================
|
| 437 |
# UI
|
| 438 |
+
# =========================
|
| 439 |
def create_app():
|
| 440 |
with gr.Blocks() as demo:
|
| 441 |
|
| 442 |
gr.Markdown("<h1>📘 Multilingual Chat with PDF / URL</h1>")
|
| 443 |
|
| 444 |
lang = gr.Dropdown(
|
| 445 |
+
["auto", "English", "Hindi", "Telugu", "Tamil", "Kannada", "Malayalam",
|
| 446 |
+
"Bengali", "Marathi", "Gujarati", "Odia", "Punjabi", "Assamese"],
|
|
|
|
|
|
|
|
|
|
| 447 |
value="auto",
|
| 448 |
label="Answer Language"
|
| 449 |
)
|
|
|
|
| 464 |
|
| 465 |
gr.Button("Ask").click(answer_question, [q, lang], [a, cits])
|
| 466 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 467 |
return demo
|
| 468 |
|
| 469 |
|