oriqqqqqqat
commited on
Commit
·
7eadd35
1
Parent(s):
b57ca85
modifymain
Browse files
main.py
CHANGED
|
@@ -21,14 +21,13 @@ from fastapi import FastAPI, File, UploadFile, Form, Request, Depends
|
|
| 21 |
from fastapi.responses import HTMLResponse, RedirectResponse
|
| 22 |
from fastapi.templating import Jinja2Templates
|
| 23 |
from fastapi.staticfiles import StaticFiles
|
| 24 |
-
import requests
|
| 25 |
-
import uvicorn
|
| 26 |
|
| 27 |
sys.path.append(os.path.abspath(os.path.dirname(__file__)))
|
| 28 |
from models.densenet.preprocess.preprocessingwangchan import get_tokenizer, get_transforms
|
| 29 |
from models.densenet.train_densenet_only import DenseNet121Classifier
|
| 30 |
from models.densenet.train_text_only import TextClassifier
|
| 31 |
-
|
|
|
|
| 32 |
|
| 33 |
HF_MODEL_URL = "https://huggingface.co/qqqqqqat/densenet_wangchan/resolve/main/best_fusion_densenet.pth"
|
| 34 |
LOCAL_MODEL_PATH = "models/densenet/best_fusion_densenet.pth"
|
|
@@ -50,13 +49,10 @@ FUSION_LABELMAP_PATH = "models/densenet/label_map_fusion_densenet.json"
|
|
| 50 |
FUSION_WEIGHTS_PATH = "models/densenet/best_fusion_densenet.pth"
|
| 51 |
with open(FUSION_LABELMAP_PATH, "r", encoding="utf-8") as f:
|
| 52 |
label_map = json.load(f)
|
| 53 |
-
|
| 54 |
class_names = [label for label, _ in sorted(label_map.items(), key=lambda x: x[1])]
|
| 55 |
NUM_CLASSES = len(class_names)
|
| 56 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 57 |
print(f"🧠 Using device: {device}")
|
| 58 |
-
|
| 59 |
-
|
| 60 |
class FusionDenseNetText(nn.Module):
|
| 61 |
def __init__(self, num_classes, dropout=0.3):
|
| 62 |
super().__init__()
|
|
@@ -72,11 +68,9 @@ class FusionDenseNetText(nn.Module):
|
|
| 72 |
fused_in = torch.cat([logits_img, logits_txt], dim=1)
|
| 73 |
fused_out = self.fusion(fused_in)
|
| 74 |
return fused_out, logits_img, logits_txt
|
| 75 |
-
|
| 76 |
-
|
| 77 |
print("🔄 Loading AI model...")
|
| 78 |
fusion_model = FusionDenseNetText(num_classes=NUM_CLASSES).to(device)
|
| 79 |
-
|
| 80 |
download_model_if_needed()
|
| 81 |
|
| 82 |
fusion_model = FusionDenseNetText(num_classes=NUM_CLASSES).to(device)
|
|
@@ -84,55 +78,38 @@ fusion_model.load_state_dict(torch.load(LOCAL_MODEL_PATH, map_location=device))
|
|
| 84 |
fusion_model.eval()
|
| 85 |
print("✅ AI Model loaded successfully!")
|
| 86 |
fusion_model.eval()
|
| 87 |
-
|
| 88 |
tokenizer = get_tokenizer()
|
| 89 |
transform = get_transforms((224, 224))
|
| 90 |
-
|
| 91 |
-
|
| 92 |
def _find_last_conv2d(mod: torch.nn.Module):
|
| 93 |
last = None
|
| 94 |
for m in mod.modules():
|
| 95 |
if isinstance(m, torch.nn.Conv2d): last = m
|
| 96 |
return last
|
| 97 |
-
|
| 98 |
-
|
| 99 |
def compute_gradcam_overlay(img_pil, image_tensor, target_class_idx):
|
| 100 |
img_branch = fusion_model.image_model
|
| 101 |
target_layer = _find_last_conv2d(img_branch)
|
| 102 |
if target_layer is None: return None
|
| 103 |
-
|
| 104 |
activations, gradients = [], []
|
| 105 |
-
|
| 106 |
def fwd_hook(_m, _i, o): activations.append(o)
|
| 107 |
def bwd_hook(_m, gin, gout): gradients.append(gout[0])
|
| 108 |
-
|
| 109 |
h1 = target_layer.register_forward_hook(fwd_hook)
|
| 110 |
h2 = target_layer.register_full_backward_hook(bwd_hook)
|
| 111 |
-
|
| 112 |
try:
|
| 113 |
img_branch.zero_grad()
|
| 114 |
logits_img = img_branch(image_tensor)
|
| 115 |
score = logits_img[0, target_class_idx]
|
| 116 |
score.backward()
|
| 117 |
-
|
| 118 |
act = activations[-1].detach()[0]
|
| 119 |
grad = gradients[-1].detach()[0]
|
| 120 |
-
|
| 121 |
weights = torch.mean(grad, dim=(1, 2))
|
| 122 |
cam = torch.relu(torch.sum(weights[:, None, None] * act, dim=0))
|
| 123 |
-
|
| 124 |
cam -= cam.min(); cam /= (cam.max() + 1e-8)
|
| 125 |
-
|
| 126 |
cam_img = Image.fromarray((cam.cpu().numpy() * 255).astype(np.uint8)).resize(img_pil.size, Image.BILINEAR)
|
| 127 |
-
|
| 128 |
cam_np = np.asarray(cam_img).astype(np.float32) / 255.0
|
| 129 |
heatmap = cm.get_cmap("jet")(cam_np)[:, :, :3]
|
| 130 |
-
|
| 131 |
img_np = np.asarray(img_pil.convert("RGB")).astype(np.float32) / 255.0
|
| 132 |
overlay = (0.6 * img_np + 0.4 * heatmap)
|
| 133 |
-
|
| 134 |
return np.clip(overlay * 255, 0, 255).astype(np.uint8)
|
| 135 |
-
|
| 136 |
finally:
|
| 137 |
h1.remove(); h2.remove(); img_branch.zero_grad()
|
| 138 |
|
|
@@ -142,191 +119,129 @@ app.mount("/static", StaticFiles(directory="static"), name="static")
|
|
| 142 |
templates = Jinja2Templates(directory="templates")
|
| 143 |
os.makedirs("uploads", exist_ok=True)
|
| 144 |
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
results_cache = {}
|
| 149 |
-
cache_lock = threading.Lock()
|
| 150 |
-
|
| 151 |
|
| 152 |
def cleanup_expired_cache():
|
|
|
|
|
|
|
|
|
|
| 153 |
while True:
|
| 154 |
-
with cache_lock:
|
|
|
|
| 155 |
expired_keys = []
|
| 156 |
current_time = time.time()
|
| 157 |
for key, value in results_cache.items():
|
| 158 |
if current_time - value["created_at"] > EXPIRATION_MINUTES * 60:
|
| 159 |
expired_keys.append(key)
|
| 160 |
-
|
|
|
|
| 161 |
for key in expired_keys:
|
| 162 |
del results_cache[key]
|
| 163 |
print(f"🧹 Cache expired and removed for key: {key}")
|
| 164 |
-
|
| 165 |
-
time.sleep(60)
|
| 166 |
-
|
| 167 |
|
| 168 |
@app.on_event("startup")
|
| 169 |
async def startup_event():
|
|
|
|
|
|
|
|
|
|
| 170 |
cleanup_thread = threading.Thread(target=cleanup_expired_cache, daemon=True)
|
| 171 |
cleanup_thread.start()
|
| 172 |
print("🗑️ Cache cleanup task started.")
|
| 173 |
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
TURNSTILE_SECRET = "0x4AAAAAACEfyIeAjGlYCXeasGsMxTuTlHU" ### (เพิ่ม)
|
| 180 |
def process_with_ai_model(image_path: str, prompt_text: str):
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
gradcam_b64 = base64.b64encode(buffered.getvalue()).decode()
|
| 218 |
-
else:
|
| 219 |
-
gradcam_b64 = None
|
| 220 |
-
|
| 221 |
-
# --- Encode original image ---
|
| 222 |
-
buffer2 = BytesIO()
|
| 223 |
-
img_pil.save(buffer2, format="PNG")
|
| 224 |
-
image_b64 = base64.b64encode(buffer2.getvalue()).decode()
|
| 225 |
-
|
| 226 |
-
return image_b64, gradcam_b64, predicted_label, confidence
|
| 227 |
-
|
| 228 |
|
| 229 |
@app.post("/uploaded")
|
| 230 |
async def handle_upload(
|
| 231 |
request: Request,
|
| 232 |
file: UploadFile = File(...),
|
| 233 |
checkboxes: List[str] = Form([]),
|
| 234 |
-
symptom_text: str = Form("")
|
| 235 |
-
cf_turnstile_response: str = Form("") ### (เพิ่ม)
|
| 236 |
):
|
| 237 |
-
|
| 238 |
-
# ---------- (เพิ่ม) VERIFY TURNSTILE ---------
|
| 239 |
-
|
| 240 |
-
if not cf_turnstile_response:
|
| 241 |
-
return templates.TemplateResponse(
|
| 242 |
-
"detect.html",
|
| 243 |
-
{"request": request, "error": "Turnstile token missing"}
|
| 244 |
-
)
|
| 245 |
-
|
| 246 |
-
verify_resp = requests.post(
|
| 247 |
-
"https://challenges.cloudflare.com/turnstile/v0/siteverify",
|
| 248 |
-
data={
|
| 249 |
-
"secret": TURNSTILE_SECRET,
|
| 250 |
-
"response": cf_turnstile_response
|
| 251 |
-
}
|
| 252 |
-
)
|
| 253 |
-
|
| 254 |
-
cf_result = verify_resp.json()
|
| 255 |
-
|
| 256 |
-
if not cf_result.get("success"):
|
| 257 |
-
return templates.TemplateResponse(
|
| 258 |
-
"detect.html",
|
| 259 |
-
{"request": request, "error": "การยืนยันความปลอดภัยไม่สำเร็จ กรุณาลองใหม่อีกครั้ง"}
|
| 260 |
-
)
|
| 261 |
-
|
| 262 |
-
# ------------------------------------------------
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
# >>> โค้ดเดิมของคุณทั้งหมดด้านล่าง (ไม่แก้) <<<
|
| 266 |
-
|
| 267 |
temp_filepath = os.path.join("uploads", f"{uuid.uuid4()}_{file.filename}")
|
| 268 |
with open(temp_filepath, "wb") as buffer:
|
| 269 |
shutil.copyfileobj(file.file, buffer)
|
| 270 |
-
|
| 271 |
-
SYMPTOM_MAP = {
|
| 272 |
-
"noSymptoms": "ไม่มีอาการ", "drinkAlcohol": "ดื่มเหล้า", "smoking": "สูบบุหรี่",
|
| 273 |
-
"chewBetelNut": "เคี้ยวหมาก", "eatSpicyFood": "กินเผ็ดแสบ", "wipeOff": "เช็ดออกได้",
|
| 274 |
-
"alwaysHurts": "เจ็บเมื่อโดนแผล"
|
| 275 |
-
}
|
| 276 |
-
|
| 277 |
final_prompt_parts = []
|
| 278 |
selected_symptoms_thai = {SYMPTOM_MAP.get(cb) for cb in checkboxes if SYMPTOM_MAP.get(cb)}
|
| 279 |
-
|
| 280 |
if "ไม่มีอาการ" in selected_symptoms_thai:
|
| 281 |
symptoms_group = {"เจ็บเมื่อโดนแผล", "กินเผ็ดแสบ"}
|
| 282 |
lifestyles_group = {"ดื่มเหล้า", "สูบบุหรี่", "เคี้ยวหมาก"}
|
| 283 |
patterns_group = {"เช็ดออกได้"}
|
| 284 |
special_group = {"ไม่มีอาการ"}
|
| 285 |
-
|
| 286 |
final_selected = (selected_symptoms_thai - symptoms_group) | \
|
| 287 |
(selected_symptoms_thai & (lifestyles_group | patterns_group | special_group))
|
| 288 |
-
|
| 289 |
final_prompt_parts.append(" ".join(sorted(list(final_selected))))
|
| 290 |
-
|
| 291 |
elif selected_symptoms_thai:
|
| 292 |
final_prompt_parts.append(" ".join(sorted(list(selected_symptoms_thai))))
|
| 293 |
-
|
| 294 |
if symptom_text and symptom_text.strip():
|
| 295 |
final_prompt_parts.append(symptom_text.strip())
|
| 296 |
-
|
| 297 |
final_prompt = "; ".join(final_prompt_parts) if final_prompt_parts else "ไม่มีอาการ"
|
| 298 |
-
|
| 299 |
image_b64, gradcam_b64, name_out, eva_output = process_with_ai_model(
|
| 300 |
image_path=temp_filepath, prompt_text=final_prompt
|
| 301 |
)
|
| 302 |
-
|
| 303 |
os.remove(temp_filepath)
|
| 304 |
-
|
| 305 |
result_id = str(uuid.uuid4())
|
| 306 |
-
|
| 307 |
result_data = {
|
| 308 |
-
"image_b64_data": image_b64,
|
| 309 |
-
"
|
| 310 |
-
"name_out": name_out,
|
| 311 |
-
"eva_output": eva_output,
|
| 312 |
}
|
| 313 |
-
|
| 314 |
with cache_lock:
|
| 315 |
results_cache[result_id] = {
|
| 316 |
"data": result_data,
|
| 317 |
-
"created_at": time.time()
|
| 318 |
}
|
| 319 |
|
| 320 |
-
results_url = request.url_for(
|
| 321 |
return RedirectResponse(url=results_url, status_code=303)
|
| 322 |
|
| 323 |
-
|
| 324 |
-
|
| 325 |
@app.get("/results/{result_id}", response_class=HTMLResponse)
|
| 326 |
async def show_results(request: Request, result_id: str):
|
| 327 |
with cache_lock:
|
| 328 |
cached_item = results_cache.get(result_id)
|
| 329 |
-
|
| 330 |
if not cached_item or (time.time() - cached_item["created_at"] > EXPIRATION_MINUTES * 60):
|
| 331 |
if cached_item:
|
| 332 |
with cache_lock:
|
|
@@ -336,8 +251,6 @@ async def show_results(request: Request, result_id: str):
|
|
| 336 |
context = {"request": request, **cached_item["data"]}
|
| 337 |
return templates.TemplateResponse("detect.html", context)
|
| 338 |
|
| 339 |
-
|
| 340 |
-
|
| 341 |
if __name__ == "__main__":
|
| 342 |
-
port = int(os.environ.get("PORT", 8000))
|
| 343 |
-
uvicorn.run(app, host="0.0.0.0", port=port)
|
|
|
|
| 21 |
from fastapi.responses import HTMLResponse, RedirectResponse
|
| 22 |
from fastapi.templating import Jinja2Templates
|
| 23 |
from fastapi.staticfiles import StaticFiles
|
|
|
|
|
|
|
| 24 |
|
| 25 |
sys.path.append(os.path.abspath(os.path.dirname(__file__)))
|
| 26 |
from models.densenet.preprocess.preprocessingwangchan import get_tokenizer, get_transforms
|
| 27 |
from models.densenet.train_densenet_only import DenseNet121Classifier
|
| 28 |
from models.densenet.train_text_only import TextClassifier
|
| 29 |
+
import requests
|
| 30 |
+
import uvicorn
|
| 31 |
|
| 32 |
HF_MODEL_URL = "https://huggingface.co/qqqqqqat/densenet_wangchan/resolve/main/best_fusion_densenet.pth"
|
| 33 |
LOCAL_MODEL_PATH = "models/densenet/best_fusion_densenet.pth"
|
|
|
|
| 49 |
FUSION_WEIGHTS_PATH = "models/densenet/best_fusion_densenet.pth"
|
| 50 |
with open(FUSION_LABELMAP_PATH, "r", encoding="utf-8") as f:
|
| 51 |
label_map = json.load(f)
|
|
|
|
| 52 |
class_names = [label for label, _ in sorted(label_map.items(), key=lambda x: x[1])]
|
| 53 |
NUM_CLASSES = len(class_names)
|
| 54 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 55 |
print(f"🧠 Using device: {device}")
|
|
|
|
|
|
|
| 56 |
class FusionDenseNetText(nn.Module):
|
| 57 |
def __init__(self, num_classes, dropout=0.3):
|
| 58 |
super().__init__()
|
|
|
|
| 68 |
fused_in = torch.cat([logits_img, logits_txt], dim=1)
|
| 69 |
fused_out = self.fusion(fused_in)
|
| 70 |
return fused_out, logits_img, logits_txt
|
|
|
|
|
|
|
| 71 |
print("🔄 Loading AI model...")
|
| 72 |
fusion_model = FusionDenseNetText(num_classes=NUM_CLASSES).to(device)
|
| 73 |
+
# ดาวน์โหลดก่อน
|
| 74 |
download_model_if_needed()
|
| 75 |
|
| 76 |
fusion_model = FusionDenseNetText(num_classes=NUM_CLASSES).to(device)
|
|
|
|
| 78 |
fusion_model.eval()
|
| 79 |
print("✅ AI Model loaded successfully!")
|
| 80 |
fusion_model.eval()
|
|
|
|
| 81 |
tokenizer = get_tokenizer()
|
| 82 |
transform = get_transforms((224, 224))
|
|
|
|
|
|
|
| 83 |
def _find_last_conv2d(mod: torch.nn.Module):
|
| 84 |
last = None
|
| 85 |
for m in mod.modules():
|
| 86 |
if isinstance(m, torch.nn.Conv2d): last = m
|
| 87 |
return last
|
|
|
|
|
|
|
| 88 |
def compute_gradcam_overlay(img_pil, image_tensor, target_class_idx):
|
| 89 |
img_branch = fusion_model.image_model
|
| 90 |
target_layer = _find_last_conv2d(img_branch)
|
| 91 |
if target_layer is None: return None
|
|
|
|
| 92 |
activations, gradients = [], []
|
|
|
|
| 93 |
def fwd_hook(_m, _i, o): activations.append(o)
|
| 94 |
def bwd_hook(_m, gin, gout): gradients.append(gout[0])
|
|
|
|
| 95 |
h1 = target_layer.register_forward_hook(fwd_hook)
|
| 96 |
h2 = target_layer.register_full_backward_hook(bwd_hook)
|
|
|
|
| 97 |
try:
|
| 98 |
img_branch.zero_grad()
|
| 99 |
logits_img = img_branch(image_tensor)
|
| 100 |
score = logits_img[0, target_class_idx]
|
| 101 |
score.backward()
|
|
|
|
| 102 |
act = activations[-1].detach()[0]
|
| 103 |
grad = gradients[-1].detach()[0]
|
|
|
|
| 104 |
weights = torch.mean(grad, dim=(1, 2))
|
| 105 |
cam = torch.relu(torch.sum(weights[:, None, None] * act, dim=0))
|
|
|
|
| 106 |
cam -= cam.min(); cam /= (cam.max() + 1e-8)
|
|
|
|
| 107 |
cam_img = Image.fromarray((cam.cpu().numpy() * 255).astype(np.uint8)).resize(img_pil.size, Image.BILINEAR)
|
|
|
|
| 108 |
cam_np = np.asarray(cam_img).astype(np.float32) / 255.0
|
| 109 |
heatmap = cm.get_cmap("jet")(cam_np)[:, :, :3]
|
|
|
|
| 110 |
img_np = np.asarray(img_pil.convert("RGB")).astype(np.float32) / 255.0
|
| 111 |
overlay = (0.6 * img_np + 0.4 * heatmap)
|
|
|
|
| 112 |
return np.clip(overlay * 255, 0, 255).astype(np.uint8)
|
|
|
|
| 113 |
finally:
|
| 114 |
h1.remove(); h2.remove(); img_branch.zero_grad()
|
| 115 |
|
|
|
|
| 119 |
templates = Jinja2Templates(directory="templates")
|
| 120 |
os.makedirs("uploads", exist_ok=True)
|
| 121 |
|
| 122 |
+
EXPIRATION_MINUTES = 10
|
| 123 |
+
results_cache = {}
|
| 124 |
+
cache_lock = threading.Lock()
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
def cleanup_expired_cache():
|
| 127 |
+
"""
|
| 128 |
+
ฟังก์ชันนี้จะทำงานใน Background Thread เพื่อตรวจสอบและลบ Cache ที่หมดอายุ
|
| 129 |
+
"""
|
| 130 |
while True:
|
| 131 |
+
with cache_lock: # ล็อคเพื่อความปลอดภัยในการเข้าถึง cache
|
| 132 |
+
# สร้าง list ของ key ที่จะลบ เพื่อไม่ให้แก้ไข dict ขณะวน loop
|
| 133 |
expired_keys = []
|
| 134 |
current_time = time.time()
|
| 135 |
for key, value in results_cache.items():
|
| 136 |
if current_time - value["created_at"] > EXPIRATION_MINUTES * 60:
|
| 137 |
expired_keys.append(key)
|
| 138 |
+
|
| 139 |
+
# ลบ key ที่หมดอายุ
|
| 140 |
for key in expired_keys:
|
| 141 |
del results_cache[key]
|
| 142 |
print(f"🧹 Cache expired and removed for key: {key}")
|
| 143 |
+
|
| 144 |
+
time.sleep(60) # ตรวจสอบทุกๆ 60 วินาที
|
|
|
|
| 145 |
|
| 146 |
@app.on_event("startup")
|
| 147 |
async def startup_event():
|
| 148 |
+
"""
|
| 149 |
+
เริ่ม Background Thread สำหรับทำความสะอาด Cache เมื่อแอปเริ่มทำงาน
|
| 150 |
+
"""
|
| 151 |
cleanup_thread = threading.Thread(target=cleanup_expired_cache, daemon=True)
|
| 152 |
cleanup_thread.start()
|
| 153 |
print("🗑️ Cache cleanup task started.")
|
| 154 |
|
| 155 |
+
SYMPTOM_MAP = {
|
| 156 |
+
"noSymptoms": "ไม่มีอาการ", "drinkAlcohol": "ดื่มเหล้า", "smoking": "สูบบุหรี่",
|
| 157 |
+
"chewBetelNut": "เคี้ยวหมาก", "eatSpicyFood": "กินเผ็ดแสบ", "wipeOff": "เช็ดออกได้",
|
| 158 |
+
"alwaysHurts": "เจ็บเมื่อโดนแผล"
|
| 159 |
+
}
|
|
|
|
| 160 |
def process_with_ai_model(image_path: str, prompt_text: str):
|
| 161 |
+
try:
|
| 162 |
+
image_pil = Image.open(image_path)
|
| 163 |
+
image_pil = ImageOps.exif_transpose(image_pil)
|
| 164 |
+
image_pil = image_pil.convert("RGB")
|
| 165 |
+
image_tensor = transform(image_pil).unsqueeze(0).to(device)
|
| 166 |
+
enc = tokenizer(prompt_text, return_tensors="pt", padding="max_length",
|
| 167 |
+
truncation=True, max_length=128)
|
| 168 |
+
ids, mask = enc["input_ids"].to(device), enc["attention_mask"].to(device)
|
| 169 |
+
with torch.no_grad():
|
| 170 |
+
fused_logits, _, _ = fusion_model(image_tensor, ids, mask)
|
| 171 |
+
probs_fused = torch.softmax(fused_logits, dim=1)[0].cpu().numpy()
|
| 172 |
+
pred_idx = int(np.argmax(probs_fused))
|
| 173 |
+
pred_label = class_names[pred_idx]
|
| 174 |
+
confidence = float(probs_fused[pred_idx]) * 100
|
| 175 |
+
gradcam_overlay_np = compute_gradcam_overlay(image_pil, image_tensor, pred_idx)
|
| 176 |
+
def image_to_base64(img):
|
| 177 |
+
buffered = BytesIO()
|
| 178 |
+
img.save(buffered, format="JPEG")
|
| 179 |
+
return base64.b64encode(buffered.getvalue()).decode('utf-8')
|
| 180 |
+
original_b64 = image_to_base64(image_pil)
|
| 181 |
+
if gradcam_overlay_np is not None:
|
| 182 |
+
gradcam_pil = Image.fromarray(gradcam_overlay_np)
|
| 183 |
+
gradcam_b64 = image_to_base64(gradcam_pil)
|
| 184 |
+
else:
|
| 185 |
+
gradcam_b64 = original_b64
|
| 186 |
+
return original_b64, gradcam_b64, pred_label, f"{confidence:.2f}"
|
| 187 |
+
except Exception as e:
|
| 188 |
+
print(f"❌ Error during AI processing: {e}")
|
| 189 |
+
return None, None, "Error", "0.00"
|
| 190 |
+
|
| 191 |
+
@app.get("/", response_class=RedirectResponse)
|
| 192 |
+
async def root():
|
| 193 |
+
return RedirectResponse(url="/detect")
|
| 194 |
+
@app.get("/detect", response_class=HTMLResponse)
|
| 195 |
+
async def show_upload_form(request: Request):
|
| 196 |
+
return templates.TemplateResponse("detect.html", {"request": request})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
@app.post("/uploaded")
|
| 199 |
async def handle_upload(
|
| 200 |
request: Request,
|
| 201 |
file: UploadFile = File(...),
|
| 202 |
checkboxes: List[str] = Form([]),
|
| 203 |
+
symptom_text: str = Form("")
|
|
|
|
| 204 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
temp_filepath = os.path.join("uploads", f"{uuid.uuid4()}_{file.filename}")
|
| 206 |
with open(temp_filepath, "wb") as buffer:
|
| 207 |
shutil.copyfileobj(file.file, buffer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
final_prompt_parts = []
|
| 209 |
selected_symptoms_thai = {SYMPTOM_MAP.get(cb) for cb in checkboxes if SYMPTOM_MAP.get(cb)}
|
|
|
|
| 210 |
if "ไม่มีอาการ" in selected_symptoms_thai:
|
| 211 |
symptoms_group = {"เจ็บเมื่อโดนแผล", "กินเผ็ดแสบ"}
|
| 212 |
lifestyles_group = {"ดื่มเหล้า", "สูบบุหรี่", "เคี้ยวหมาก"}
|
| 213 |
patterns_group = {"เช็ดออกได้"}
|
| 214 |
special_group = {"ไม่มีอาการ"}
|
|
|
|
| 215 |
final_selected = (selected_symptoms_thai - symptoms_group) | \
|
| 216 |
(selected_symptoms_thai & (lifestyles_group | patterns_group | special_group))
|
|
|
|
| 217 |
final_prompt_parts.append(" ".join(sorted(list(final_selected))))
|
|
|
|
| 218 |
elif selected_symptoms_thai:
|
| 219 |
final_prompt_parts.append(" ".join(sorted(list(selected_symptoms_thai))))
|
|
|
|
| 220 |
if symptom_text and symptom_text.strip():
|
| 221 |
final_prompt_parts.append(symptom_text.strip())
|
|
|
|
| 222 |
final_prompt = "; ".join(final_prompt_parts) if final_prompt_parts else "ไม่มีอาการ"
|
|
|
|
| 223 |
image_b64, gradcam_b64, name_out, eva_output = process_with_ai_model(
|
| 224 |
image_path=temp_filepath, prompt_text=final_prompt
|
| 225 |
)
|
|
|
|
| 226 |
os.remove(temp_filepath)
|
|
|
|
| 227 |
result_id = str(uuid.uuid4())
|
|
|
|
| 228 |
result_data = {
|
| 229 |
+
"image_b64_data": image_b64, "gradcam_b64_data": gradcam_b64,
|
| 230 |
+
"name_out": name_out, "eva_output": eva_output,
|
|
|
|
|
|
|
| 231 |
}
|
|
|
|
| 232 |
with cache_lock:
|
| 233 |
results_cache[result_id] = {
|
| 234 |
"data": result_data,
|
| 235 |
+
"created_at": time.time()
|
| 236 |
}
|
| 237 |
|
| 238 |
+
results_url = request.url_for('show_results', result_id=result_id)
|
| 239 |
return RedirectResponse(url=results_url, status_code=303)
|
| 240 |
|
|
|
|
|
|
|
| 241 |
@app.get("/results/{result_id}", response_class=HTMLResponse)
|
| 242 |
async def show_results(request: Request, result_id: str):
|
| 243 |
with cache_lock:
|
| 244 |
cached_item = results_cache.get(result_id)
|
|
|
|
| 245 |
if not cached_item or (time.time() - cached_item["created_at"] > EXPIRATION_MINUTES * 60):
|
| 246 |
if cached_item:
|
| 247 |
with cache_lock:
|
|
|
|
| 251 |
context = {"request": request, **cached_item["data"]}
|
| 252 |
return templates.TemplateResponse("detect.html", context)
|
| 253 |
|
|
|
|
|
|
|
| 254 |
if __name__ == "__main__":
|
| 255 |
+
port = int(os.environ.get("PORT", 8000)) # ใช้ PORT ของ hosting ถ้ามี
|
| 256 |
+
uvicorn.run(app, host="0.0.0.0", port=port)
|