oriqqqqqqat
commited on
Commit
·
b57ca85
1
Parent(s):
a5e2a63
modifymain
Browse files
main.py
CHANGED
|
@@ -21,12 +21,14 @@ from fastapi import FastAPI, File, UploadFile, Form, Request, Depends
|
|
| 21 |
from fastapi.responses import HTMLResponse, RedirectResponse
|
| 22 |
from fastapi.templating import Jinja2Templates
|
| 23 |
from fastapi.staticfiles import StaticFiles
|
|
|
|
|
|
|
| 24 |
|
| 25 |
sys.path.append(os.path.abspath(os.path.dirname(__file__)))
|
| 26 |
from models.densenet.preprocess.preprocessingwangchan import get_tokenizer, get_transforms
|
| 27 |
from models.densenet.train_densenet_only import DenseNet121Classifier
|
| 28 |
from models.densenet.train_text_only import TextClassifier
|
| 29 |
-
|
| 30 |
|
| 31 |
HF_MODEL_URL = "https://huggingface.co/qqqqqqat/densenet_wangchan/resolve/main/best_fusion_densenet.pth"
|
| 32 |
LOCAL_MODEL_PATH = "models/densenet/best_fusion_densenet.pth"
|
|
@@ -48,10 +50,13 @@ FUSION_LABELMAP_PATH = "models/densenet/label_map_fusion_densenet.json"
|
|
| 48 |
FUSION_WEIGHTS_PATH = "models/densenet/best_fusion_densenet.pth"
|
| 49 |
with open(FUSION_LABELMAP_PATH, "r", encoding="utf-8") as f:
|
| 50 |
label_map = json.load(f)
|
|
|
|
| 51 |
class_names = [label for label, _ in sorted(label_map.items(), key=lambda x: x[1])]
|
| 52 |
NUM_CLASSES = len(class_names)
|
| 53 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 54 |
print(f"🧠 Using device: {device}")
|
|
|
|
|
|
|
| 55 |
class FusionDenseNetText(nn.Module):
|
| 56 |
def __init__(self, num_classes, dropout=0.3):
|
| 57 |
super().__init__()
|
|
@@ -67,9 +72,11 @@ class FusionDenseNetText(nn.Module):
|
|
| 67 |
fused_in = torch.cat([logits_img, logits_txt], dim=1)
|
| 68 |
fused_out = self.fusion(fused_in)
|
| 69 |
return fused_out, logits_img, logits_txt
|
|
|
|
|
|
|
| 70 |
print("🔄 Loading AI model...")
|
| 71 |
fusion_model = FusionDenseNetText(num_classes=NUM_CLASSES).to(device)
|
| 72 |
-
|
| 73 |
download_model_if_needed()
|
| 74 |
|
| 75 |
fusion_model = FusionDenseNetText(num_classes=NUM_CLASSES).to(device)
|
|
@@ -77,38 +84,55 @@ fusion_model.load_state_dict(torch.load(LOCAL_MODEL_PATH, map_location=device))
|
|
| 77 |
fusion_model.eval()
|
| 78 |
print("✅ AI Model loaded successfully!")
|
| 79 |
fusion_model.eval()
|
|
|
|
| 80 |
tokenizer = get_tokenizer()
|
| 81 |
transform = get_transforms((224, 224))
|
|
|
|
|
|
|
| 82 |
def _find_last_conv2d(mod: torch.nn.Module):
|
| 83 |
last = None
|
| 84 |
for m in mod.modules():
|
| 85 |
if isinstance(m, torch.nn.Conv2d): last = m
|
| 86 |
return last
|
|
|
|
|
|
|
| 87 |
def compute_gradcam_overlay(img_pil, image_tensor, target_class_idx):
|
| 88 |
img_branch = fusion_model.image_model
|
| 89 |
target_layer = _find_last_conv2d(img_branch)
|
| 90 |
if target_layer is None: return None
|
|
|
|
| 91 |
activations, gradients = [], []
|
|
|
|
| 92 |
def fwd_hook(_m, _i, o): activations.append(o)
|
| 93 |
def bwd_hook(_m, gin, gout): gradients.append(gout[0])
|
|
|
|
| 94 |
h1 = target_layer.register_forward_hook(fwd_hook)
|
| 95 |
h2 = target_layer.register_full_backward_hook(bwd_hook)
|
|
|
|
| 96 |
try:
|
| 97 |
img_branch.zero_grad()
|
| 98 |
logits_img = img_branch(image_tensor)
|
| 99 |
score = logits_img[0, target_class_idx]
|
| 100 |
score.backward()
|
|
|
|
| 101 |
act = activations[-1].detach()[0]
|
| 102 |
grad = gradients[-1].detach()[0]
|
|
|
|
| 103 |
weights = torch.mean(grad, dim=(1, 2))
|
| 104 |
cam = torch.relu(torch.sum(weights[:, None, None] * act, dim=0))
|
|
|
|
| 105 |
cam -= cam.min(); cam /= (cam.max() + 1e-8)
|
|
|
|
| 106 |
cam_img = Image.fromarray((cam.cpu().numpy() * 255).astype(np.uint8)).resize(img_pil.size, Image.BILINEAR)
|
|
|
|
| 107 |
cam_np = np.asarray(cam_img).astype(np.float32) / 255.0
|
| 108 |
heatmap = cm.get_cmap("jet")(cam_np)[:, :, :3]
|
|
|
|
| 109 |
img_np = np.asarray(img_pil.convert("RGB")).astype(np.float32) / 255.0
|
| 110 |
overlay = (0.6 * img_np + 0.4 * heatmap)
|
|
|
|
| 111 |
return np.clip(overlay * 255, 0, 255).astype(np.uint8)
|
|
|
|
| 112 |
finally:
|
| 113 |
h1.remove(); h2.remove(); img_branch.zero_grad()
|
| 114 |
|
|
@@ -118,129 +142,191 @@ app.mount("/static", StaticFiles(directory="static"), name="static")
|
|
| 118 |
templates = Jinja2Templates(directory="templates")
|
| 119 |
os.makedirs("uploads", exist_ok=True)
|
| 120 |
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
def cleanup_expired_cache():
|
| 126 |
-
"""
|
| 127 |
-
ฟังก์ชันนี้จะทำงานใน Background Thread เพื่อตรวจสอบและลบ Cache ที่หมดอายุ
|
| 128 |
-
"""
|
| 129 |
while True:
|
| 130 |
-
with cache_lock:
|
| 131 |
-
# สร้าง list ของ key ที่จะลบ เพื่อไม่ให้แก้ไข dict ขณะวน loop
|
| 132 |
expired_keys = []
|
| 133 |
current_time = time.time()
|
| 134 |
for key, value in results_cache.items():
|
| 135 |
if current_time - value["created_at"] > EXPIRATION_MINUTES * 60:
|
| 136 |
expired_keys.append(key)
|
| 137 |
-
|
| 138 |
-
# ลบ key ที่หมดอายุ
|
| 139 |
for key in expired_keys:
|
| 140 |
del results_cache[key]
|
| 141 |
print(f"🧹 Cache expired and removed for key: {key}")
|
| 142 |
-
|
| 143 |
-
time.sleep(60)
|
|
|
|
| 144 |
|
| 145 |
@app.on_event("startup")
|
| 146 |
async def startup_event():
|
| 147 |
-
"""
|
| 148 |
-
เริ่ม Background Thread สำหรับทำความสะอาด Cache เมื่อแอปเริ่มทำงาน
|
| 149 |
-
"""
|
| 150 |
cleanup_thread = threading.Thread(target=cleanup_expired_cache, daemon=True)
|
| 151 |
cleanup_thread.start()
|
| 152 |
print("🗑️ Cache cleanup task started.")
|
| 153 |
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
|
|
|
| 159 |
def process_with_ai_model(image_path: str, prompt_text: str):
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
@app.post("/uploaded")
|
| 198 |
async def handle_upload(
|
| 199 |
request: Request,
|
| 200 |
file: UploadFile = File(...),
|
| 201 |
checkboxes: List[str] = Form([]),
|
| 202 |
-
symptom_text: str = Form("")
|
|
|
|
| 203 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
temp_filepath = os.path.join("uploads", f"{uuid.uuid4()}_{file.filename}")
|
| 205 |
with open(temp_filepath, "wb") as buffer:
|
| 206 |
shutil.copyfileobj(file.file, buffer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
final_prompt_parts = []
|
| 208 |
selected_symptoms_thai = {SYMPTOM_MAP.get(cb) for cb in checkboxes if SYMPTOM_MAP.get(cb)}
|
|
|
|
| 209 |
if "ไม่มีอาการ" in selected_symptoms_thai:
|
| 210 |
symptoms_group = {"เจ็บเมื่อโดนแผล", "กินเผ็ดแสบ"}
|
| 211 |
lifestyles_group = {"ดื่มเหล้า", "สูบบุหรี่", "เคี้ยวหมาก"}
|
| 212 |
patterns_group = {"เช็ดออกได้"}
|
| 213 |
special_group = {"ไม่มีอาการ"}
|
|
|
|
| 214 |
final_selected = (selected_symptoms_thai - symptoms_group) | \
|
| 215 |
(selected_symptoms_thai & (lifestyles_group | patterns_group | special_group))
|
|
|
|
| 216 |
final_prompt_parts.append(" ".join(sorted(list(final_selected))))
|
|
|
|
| 217 |
elif selected_symptoms_thai:
|
| 218 |
final_prompt_parts.append(" ".join(sorted(list(selected_symptoms_thai))))
|
|
|
|
| 219 |
if symptom_text and symptom_text.strip():
|
| 220 |
final_prompt_parts.append(symptom_text.strip())
|
|
|
|
| 221 |
final_prompt = "; ".join(final_prompt_parts) if final_prompt_parts else "ไม่มีอาการ"
|
|
|
|
| 222 |
image_b64, gradcam_b64, name_out, eva_output = process_with_ai_model(
|
| 223 |
image_path=temp_filepath, prompt_text=final_prompt
|
| 224 |
)
|
|
|
|
| 225 |
os.remove(temp_filepath)
|
|
|
|
| 226 |
result_id = str(uuid.uuid4())
|
|
|
|
| 227 |
result_data = {
|
| 228 |
-
"image_b64_data": image_b64,
|
| 229 |
-
"
|
|
|
|
|
|
|
| 230 |
}
|
|
|
|
| 231 |
with cache_lock:
|
| 232 |
results_cache[result_id] = {
|
| 233 |
"data": result_data,
|
| 234 |
-
"created_at": time.time()
|
| 235 |
}
|
| 236 |
|
| 237 |
-
results_url = request.url_for(
|
| 238 |
return RedirectResponse(url=results_url, status_code=303)
|
| 239 |
|
|
|
|
|
|
|
| 240 |
@app.get("/results/{result_id}", response_class=HTMLResponse)
|
| 241 |
async def show_results(request: Request, result_id: str):
|
| 242 |
with cache_lock:
|
| 243 |
cached_item = results_cache.get(result_id)
|
|
|
|
| 244 |
if not cached_item or (time.time() - cached_item["created_at"] > EXPIRATION_MINUTES * 60):
|
| 245 |
if cached_item:
|
| 246 |
with cache_lock:
|
|
@@ -250,6 +336,8 @@ async def show_results(request: Request, result_id: str):
|
|
| 250 |
context = {"request": request, **cached_item["data"]}
|
| 251 |
return templates.TemplateResponse("detect.html", context)
|
| 252 |
|
|
|
|
|
|
|
| 253 |
if __name__ == "__main__":
|
| 254 |
-
port = int(os.environ.get("PORT", 8000))
|
| 255 |
-
uvicorn.run(app, host="0.0.0.0", port=port)
|
|
|
|
| 21 |
from fastapi.responses import HTMLResponse, RedirectResponse
|
| 22 |
from fastapi.templating import Jinja2Templates
|
| 23 |
from fastapi.staticfiles import StaticFiles
|
| 24 |
+
import requests
|
| 25 |
+
import uvicorn
|
| 26 |
|
| 27 |
sys.path.append(os.path.abspath(os.path.dirname(__file__)))
|
| 28 |
from models.densenet.preprocess.preprocessingwangchan import get_tokenizer, get_transforms
|
| 29 |
from models.densenet.train_densenet_only import DenseNet121Classifier
|
| 30 |
from models.densenet.train_text_only import TextClassifier
|
| 31 |
+
|
| 32 |
|
| 33 |
HF_MODEL_URL = "https://huggingface.co/qqqqqqat/densenet_wangchan/resolve/main/best_fusion_densenet.pth"
|
| 34 |
LOCAL_MODEL_PATH = "models/densenet/best_fusion_densenet.pth"
|
|
|
|
| 50 |
FUSION_WEIGHTS_PATH = "models/densenet/best_fusion_densenet.pth"
|
| 51 |
with open(FUSION_LABELMAP_PATH, "r", encoding="utf-8") as f:
|
| 52 |
label_map = json.load(f)
|
| 53 |
+
|
| 54 |
class_names = [label for label, _ in sorted(label_map.items(), key=lambda x: x[1])]
|
| 55 |
NUM_CLASSES = len(class_names)
|
| 56 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 57 |
print(f"🧠 Using device: {device}")
|
| 58 |
+
|
| 59 |
+
|
| 60 |
class FusionDenseNetText(nn.Module):
|
| 61 |
def __init__(self, num_classes, dropout=0.3):
|
| 62 |
super().__init__()
|
|
|
|
| 72 |
fused_in = torch.cat([logits_img, logits_txt], dim=1)
|
| 73 |
fused_out = self.fusion(fused_in)
|
| 74 |
return fused_out, logits_img, logits_txt
|
| 75 |
+
|
| 76 |
+
|
| 77 |
print("🔄 Loading AI model...")
|
| 78 |
fusion_model = FusionDenseNetText(num_classes=NUM_CLASSES).to(device)
|
| 79 |
+
|
| 80 |
download_model_if_needed()
|
| 81 |
|
| 82 |
fusion_model = FusionDenseNetText(num_classes=NUM_CLASSES).to(device)
|
|
|
|
| 84 |
fusion_model.eval()
|
| 85 |
print("✅ AI Model loaded successfully!")
|
| 86 |
fusion_model.eval()
|
| 87 |
+
|
| 88 |
tokenizer = get_tokenizer()
|
| 89 |
transform = get_transforms((224, 224))
|
| 90 |
+
|
| 91 |
+
|
| 92 |
def _find_last_conv2d(mod: torch.nn.Module):
|
| 93 |
last = None
|
| 94 |
for m in mod.modules():
|
| 95 |
if isinstance(m, torch.nn.Conv2d): last = m
|
| 96 |
return last
|
| 97 |
+
|
| 98 |
+
|
| 99 |
def compute_gradcam_overlay(img_pil, image_tensor, target_class_idx):
|
| 100 |
img_branch = fusion_model.image_model
|
| 101 |
target_layer = _find_last_conv2d(img_branch)
|
| 102 |
if target_layer is None: return None
|
| 103 |
+
|
| 104 |
activations, gradients = [], []
|
| 105 |
+
|
| 106 |
def fwd_hook(_m, _i, o): activations.append(o)
|
| 107 |
def bwd_hook(_m, gin, gout): gradients.append(gout[0])
|
| 108 |
+
|
| 109 |
h1 = target_layer.register_forward_hook(fwd_hook)
|
| 110 |
h2 = target_layer.register_full_backward_hook(bwd_hook)
|
| 111 |
+
|
| 112 |
try:
|
| 113 |
img_branch.zero_grad()
|
| 114 |
logits_img = img_branch(image_tensor)
|
| 115 |
score = logits_img[0, target_class_idx]
|
| 116 |
score.backward()
|
| 117 |
+
|
| 118 |
act = activations[-1].detach()[0]
|
| 119 |
grad = gradients[-1].detach()[0]
|
| 120 |
+
|
| 121 |
weights = torch.mean(grad, dim=(1, 2))
|
| 122 |
cam = torch.relu(torch.sum(weights[:, None, None] * act, dim=0))
|
| 123 |
+
|
| 124 |
cam -= cam.min(); cam /= (cam.max() + 1e-8)
|
| 125 |
+
|
| 126 |
cam_img = Image.fromarray((cam.cpu().numpy() * 255).astype(np.uint8)).resize(img_pil.size, Image.BILINEAR)
|
| 127 |
+
|
| 128 |
cam_np = np.asarray(cam_img).astype(np.float32) / 255.0
|
| 129 |
heatmap = cm.get_cmap("jet")(cam_np)[:, :, :3]
|
| 130 |
+
|
| 131 |
img_np = np.asarray(img_pil.convert("RGB")).astype(np.float32) / 255.0
|
| 132 |
overlay = (0.6 * img_np + 0.4 * heatmap)
|
| 133 |
+
|
| 134 |
return np.clip(overlay * 255, 0, 255).astype(np.uint8)
|
| 135 |
+
|
| 136 |
finally:
|
| 137 |
h1.remove(); h2.remove(); img_branch.zero_grad()
|
| 138 |
|
|
|
|
| 142 |
templates = Jinja2Templates(directory="templates")
|
| 143 |
os.makedirs("uploads", exist_ok=True)
|
| 144 |
|
| 145 |
+
|
| 146 |
+
# ===== Cache Cleanup Thread =====
|
| 147 |
+
EXPIRATION_MINUTES = 10
|
| 148 |
+
results_cache = {}
|
| 149 |
+
cache_lock = threading.Lock()
|
| 150 |
+
|
| 151 |
|
| 152 |
def cleanup_expired_cache():
|
|
|
|
|
|
|
|
|
|
| 153 |
while True:
|
| 154 |
+
with cache_lock:
|
|
|
|
| 155 |
expired_keys = []
|
| 156 |
current_time = time.time()
|
| 157 |
for key, value in results_cache.items():
|
| 158 |
if current_time - value["created_at"] > EXPIRATION_MINUTES * 60:
|
| 159 |
expired_keys.append(key)
|
| 160 |
+
|
|
|
|
| 161 |
for key in expired_keys:
|
| 162 |
del results_cache[key]
|
| 163 |
print(f"🧹 Cache expired and removed for key: {key}")
|
| 164 |
+
|
| 165 |
+
time.sleep(60)
|
| 166 |
+
|
| 167 |
|
| 168 |
@app.on_event("startup")
|
| 169 |
async def startup_event():
|
|
|
|
|
|
|
|
|
|
| 170 |
cleanup_thread = threading.Thread(target=cleanup_expired_cache, daemon=True)
|
| 171 |
cleanup_thread.start()
|
| 172 |
print("🗑️ Cache cleanup task started.")
|
| 173 |
|
| 174 |
+
|
| 175 |
+
# ===============================
|
| 176 |
+
# >>> TURNSTILE VERIFY <<<
|
| 177 |
+
# ===============================
|
| 178 |
+
|
| 179 |
+
TURNSTILE_SECRET = "0x4AAAAAACEfyIeAjGlYCXeasGsMxTuTlHU" ### (เพิ่ม)
|
| 180 |
def process_with_ai_model(image_path: str, prompt_text: str):
|
| 181 |
+
"""ประมวลผลภาพด้วย DenseNet + Text model และสร้างผลลัพธ์"""
|
| 182 |
+
|
| 183 |
+
# --- Load image ---
|
| 184 |
+
img_pil = Image.open(image_path).convert("RGB")
|
| 185 |
+
img_tensor = transform(img_pil).unsqueeze(0).to(device)
|
| 186 |
+
|
| 187 |
+
# --- Tokenize text prompt ---
|
| 188 |
+
encoding = tokenizer(
|
| 189 |
+
prompt_text,
|
| 190 |
+
padding="max_length",
|
| 191 |
+
truncation=True,
|
| 192 |
+
max_length=128,
|
| 193 |
+
return_tensors="pt"
|
| 194 |
+
)
|
| 195 |
+
input_ids = encoding["input_ids"].to(device)
|
| 196 |
+
attention_mask = encoding["attention_mask"].to(device)
|
| 197 |
+
|
| 198 |
+
# --- Forward pass ---
|
| 199 |
+
with torch.no_grad():
|
| 200 |
+
fused_out, logits_img, logits_txt = fusion_model(
|
| 201 |
+
img_tensor, input_ids, attention_mask
|
| 202 |
+
)
|
| 203 |
+
probs = torch.softmax(fused_out, dim=1)[0]
|
| 204 |
+
pred_idx = torch.argmax(probs).item()
|
| 205 |
+
|
| 206 |
+
predicted_label = class_names[pred_idx]
|
| 207 |
+
confidence = probs[pred_idx].item()
|
| 208 |
+
|
| 209 |
+
name_out = f"{predicted_label} ({confidence:.2f})"
|
| 210 |
+
|
| 211 |
+
# --- Compute GradCAM ---
|
| 212 |
+
overlay_np = compute_gradcam_overlay(img_pil, img_tensor, pred_idx)
|
| 213 |
+
if overlay_np is not None:
|
| 214 |
+
overlay_img = Image.fromarray(overlay_np)
|
| 215 |
+
buffered = BytesIO()
|
| 216 |
+
overlay_img.save(buffered, format="PNG")
|
| 217 |
+
gradcam_b64 = base64.b64encode(buffered.getvalue()).decode()
|
| 218 |
+
else:
|
| 219 |
+
gradcam_b64 = None
|
| 220 |
+
|
| 221 |
+
# --- Encode original image ---
|
| 222 |
+
buffer2 = BytesIO()
|
| 223 |
+
img_pil.save(buffer2, format="PNG")
|
| 224 |
+
image_b64 = base64.b64encode(buffer2.getvalue()).decode()
|
| 225 |
+
|
| 226 |
+
return image_b64, gradcam_b64, predicted_label, confidence
|
| 227 |
+
|
| 228 |
|
| 229 |
@app.post("/uploaded")
|
| 230 |
async def handle_upload(
|
| 231 |
request: Request,
|
| 232 |
file: UploadFile = File(...),
|
| 233 |
checkboxes: List[str] = Form([]),
|
| 234 |
+
symptom_text: str = Form(""),
|
| 235 |
+
cf_turnstile_response: str = Form("") ### (เพิ่ม)
|
| 236 |
):
|
| 237 |
+
|
| 238 |
+
# ---------- (เพิ่ม) VERIFY TURNSTILE ---------
|
| 239 |
+
|
| 240 |
+
if not cf_turnstile_response:
|
| 241 |
+
return templates.TemplateResponse(
|
| 242 |
+
"detect.html",
|
| 243 |
+
{"request": request, "error": "Turnstile token missing"}
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
verify_resp = requests.post(
|
| 247 |
+
"https://challenges.cloudflare.com/turnstile/v0/siteverify",
|
| 248 |
+
data={
|
| 249 |
+
"secret": TURNSTILE_SECRET,
|
| 250 |
+
"response": cf_turnstile_response
|
| 251 |
+
}
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
cf_result = verify_resp.json()
|
| 255 |
+
|
| 256 |
+
if not cf_result.get("success"):
|
| 257 |
+
return templates.TemplateResponse(
|
| 258 |
+
"detect.html",
|
| 259 |
+
{"request": request, "error": "การยืนยันความปลอดภัยไม่สำเร็จ กรุณาลองใหม่อีกครั้ง"}
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
# ------------------------------------------------
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
# >>> โค้ดเดิมของคุณทั้งหมดด้านล่าง (ไม่แก้) <<<
|
| 266 |
+
|
| 267 |
temp_filepath = os.path.join("uploads", f"{uuid.uuid4()}_{file.filename}")
|
| 268 |
with open(temp_filepath, "wb") as buffer:
|
| 269 |
shutil.copyfileobj(file.file, buffer)
|
| 270 |
+
|
| 271 |
+
SYMPTOM_MAP = {
|
| 272 |
+
"noSymptoms": "ไม่มีอาการ", "drinkAlcohol": "ดื่มเหล้า", "smoking": "สูบบุหรี่",
|
| 273 |
+
"chewBetelNut": "เคี้ยวหมาก", "eatSpicyFood": "กินเผ็ดแสบ", "wipeOff": "เช็ดออกได้",
|
| 274 |
+
"alwaysHurts": "เจ็บเมื่อโดนแผล"
|
| 275 |
+
}
|
| 276 |
+
|
| 277 |
final_prompt_parts = []
|
| 278 |
selected_symptoms_thai = {SYMPTOM_MAP.get(cb) for cb in checkboxes if SYMPTOM_MAP.get(cb)}
|
| 279 |
+
|
| 280 |
if "ไม่มีอาการ" in selected_symptoms_thai:
|
| 281 |
symptoms_group = {"เจ็บเมื่อโดนแผล", "กินเผ็ดแสบ"}
|
| 282 |
lifestyles_group = {"ดื่มเหล้า", "สูบบุหรี่", "เคี้ยวหมาก"}
|
| 283 |
patterns_group = {"เช็ดออกได้"}
|
| 284 |
special_group = {"ไม่มีอาการ"}
|
| 285 |
+
|
| 286 |
final_selected = (selected_symptoms_thai - symptoms_group) | \
|
| 287 |
(selected_symptoms_thai & (lifestyles_group | patterns_group | special_group))
|
| 288 |
+
|
| 289 |
final_prompt_parts.append(" ".join(sorted(list(final_selected))))
|
| 290 |
+
|
| 291 |
elif selected_symptoms_thai:
|
| 292 |
final_prompt_parts.append(" ".join(sorted(list(selected_symptoms_thai))))
|
| 293 |
+
|
| 294 |
if symptom_text and symptom_text.strip():
|
| 295 |
final_prompt_parts.append(symptom_text.strip())
|
| 296 |
+
|
| 297 |
final_prompt = "; ".join(final_prompt_parts) if final_prompt_parts else "ไม่มีอาการ"
|
| 298 |
+
|
| 299 |
image_b64, gradcam_b64, name_out, eva_output = process_with_ai_model(
|
| 300 |
image_path=temp_filepath, prompt_text=final_prompt
|
| 301 |
)
|
| 302 |
+
|
| 303 |
os.remove(temp_filepath)
|
| 304 |
+
|
| 305 |
result_id = str(uuid.uuid4())
|
| 306 |
+
|
| 307 |
result_data = {
|
| 308 |
+
"image_b64_data": image_b64,
|
| 309 |
+
"gradcam_b64_data": gradcam_b64,
|
| 310 |
+
"name_out": name_out,
|
| 311 |
+
"eva_output": eva_output,
|
| 312 |
}
|
| 313 |
+
|
| 314 |
with cache_lock:
|
| 315 |
results_cache[result_id] = {
|
| 316 |
"data": result_data,
|
| 317 |
+
"created_at": time.time()
|
| 318 |
}
|
| 319 |
|
| 320 |
+
results_url = request.url_for("show_results", result_id=result_id)
|
| 321 |
return RedirectResponse(url=results_url, status_code=303)
|
| 322 |
|
| 323 |
+
|
| 324 |
+
|
| 325 |
@app.get("/results/{result_id}", response_class=HTMLResponse)
|
| 326 |
async def show_results(request: Request, result_id: str):
|
| 327 |
with cache_lock:
|
| 328 |
cached_item = results_cache.get(result_id)
|
| 329 |
+
|
| 330 |
if not cached_item or (time.time() - cached_item["created_at"] > EXPIRATION_MINUTES * 60):
|
| 331 |
if cached_item:
|
| 332 |
with cache_lock:
|
|
|
|
| 336 |
context = {"request": request, **cached_item["data"]}
|
| 337 |
return templates.TemplateResponse("detect.html", context)
|
| 338 |
|
| 339 |
+
|
| 340 |
+
|
| 341 |
if __name__ == "__main__":
|
| 342 |
+
port = int(os.environ.get("PORT", 8000))
|
| 343 |
+
uvicorn.run(app, host="0.0.0.0", port=port)
|