ZennyKenny's picture
Update app.py
8f42518 verified
raw
history blame
16 kB
import os
import io
import base64
import warnings
from typing import Optional, Tuple
import gradio as gr
import pandas as pd
import numpy as np
import plotly.graph_objects as go
from plotly.subplots import make_subplots
warnings.filterwarnings("ignore")
# Import Mostly AI SDK
try:
from mostlyai.sdk import MostlyAI
MOSTLY_AI_AVAILABLE = True
except ImportError:
MOSTLY_AI_AVAILABLE = False
print("Warning: Mostly AI SDK not available. Please install with: pip install mostlyai[local]")
class SyntheticDataGenerator:
def __init__(self):
self.mostly = None
self.generator = None
self.original_data = None
def initialize_mostly_ai(self) -> Tuple[bool, str]:
"""Initialize Mostly AI SDK"""
if not MOSTLY_AI_AVAILABLE:
return False, "Mostly AI SDK not installed. Please install with: pip install mostlyai[local]"
try:
self.mostly = MostlyAI(local=True, local_port=8080)
return True, "Mostly AI SDK initialized successfully."
except Exception as e:
return False, f"Failed to initialize Mostly AI SDK: {str(e)}"
def train_generator(
self,
data: pd.DataFrame,
name: str,
epochs: int = 10,
max_training_time: int = 60,
batch_size: int = 32,
value_protection: bool = True,
) -> Tuple[bool, str]:
"""Train the synthetic data generator"""
if not self.mostly:
return False, "Mostly AI SDK not initialized. Please initialize the SDK first."
try:
self.original_data = data
train_config = {
"tables": [
{
"name": name,
"data": data,
"tabular_model_configuration": {
"max_epochs": epochs,
"max_training_time": max_training_time,
"value_protection": value_protection,
"batch_size": batch_size,
},
}
]
}
self.generator = self.mostly.train(config=train_config)
return True, f"Training completed successfully. Model name: {name}"
except Exception as e:
return False, f"Training failed with error: {str(e)}"
def generate_synthetic_data(self, size: int) -> Tuple[Optional[pd.DataFrame], str]:
"""Generate synthetic data"""
if not self.generator:
return None, "No trained generator available. Please train a model first."
try:
synthetic_data = self.mostly.generate(self.generator, size=size)
df = synthetic_data.data()
return df, f"Synthetic data generated successfully. {len(df)} records created."
except Exception as e:
return None, f"Synthetic data generation failed with error: {str(e)}"
# ---- Report helpers (new) ----
def get_quality_report_text(self) -> str:
"""Return a concise status about the report."""
if not self.generator:
return "No trained generator available. Please train a model first."
try:
_ = self.generator.reports(display=False) # builds report internally
return "Quality report generated. Use the button to download."
except Exception as e:
return f"Failed to generate quality report: {str(e)}"
def get_quality_report_file(self) -> Optional[str]:
"""
Generate/export the report and return a file path for download.
Tries to find an existing ZIP; otherwise saves a TXT fallback.
"""
if not self.generator:
return None
try:
rep = self.generator.reports(display=False)
# 1) If a string path to a .zip is returned
if isinstance(rep, str) and rep.endswith(".zip") and os.path.exists(rep):
return rep
# 2) If the object exposes a path-like attribute
for attr in ("archive_path", "zip_path", "path", "file_path"):
if hasattr(rep, attr):
p = getattr(rep, attr)
if isinstance(p, str) and os.path.exists(p):
return p
# 3) If the object can save/export itself
target_zip = "/mnt/data/quality_report.zip"
if hasattr(rep, "save"):
try:
rep.save(target_zip)
if os.path.exists(target_zip):
return target_zip
except Exception:
pass
if hasattr(rep, "export"):
try:
rep.export(target_zip)
if os.path.exists(target_zip):
return target_zip
except Exception:
pass
# 4) Fallback: write string representation
target_txt = "/mnt/data/quality_report.txt"
with open(target_txt, "w", encoding="utf-8") as f:
f.write(str(rep))
return target_txt
except Exception:
return None
def estimate_memory_usage(self, df: pd.DataFrame) -> str:
"""Estimate memory usage for the dataset"""
if df is None or df.empty:
return "No data available to analyze."
memory_mb = df.memory_usage(deep=True).sum() / (1024 * 1024)
rows, cols = len(df), len(df.columns)
estimated_training_mb = memory_mb * 4
if memory_mb < 100:
status = "Good"
elif memory_mb < 500:
status = "Large"
else:
status = "Very Large"
return f"""
Memory Usage Estimate:
- Data size: {memory_mb:.1f} MB
- Estimated training memory: {estimated_training_mb:.1f} MB
- Status: {status}
- Rows: {rows:,} | Columns: {cols}
""".strip()
# Initialize the generator
generator = SyntheticDataGenerator()
# ---- Wrapper functions for Gradio ----
def initialize_sdk() -> str:
ok, msg = generator.initialize_mostly_ai()
return ("Success: " if ok else "Error: ") + msg
def train_model(
data: pd.DataFrame,
model_name: str,
epochs: int,
max_training_time: int,
batch_size: int,
value_protection: bool,
) -> str:
if data is None or data.empty:
return "Error: No data provided. Please upload or create sample data first."
ok, msg = generator.train_generator(
data, model_name, epochs, max_training_time, batch_size, value_protection
)
return ("Success: " if ok else "Error: ") + msg
def generate_data(size: int) -> Tuple[Optional[pd.DataFrame], str]:
synthetic_df, message = generator.generate_synthetic_data(size)
status = "Success" if synthetic_df is not None else "Error"
return synthetic_df, f"{status}: {message}"
def get_quality_report_and_file():
"""
Return (status_text, download_component_update)
The second value updates the DownloadButton with the file path and visibility.
"""
status = generator.get_quality_report_text()
path = generator.get_quality_report_file()
if path:
return status, gr.update(value=path, visible=True)
else:
# keep it hidden if we don't have a file
return status, gr.update(visible=False)
def create_comparison_plot(original_df: pd.DataFrame, synthetic_df: pd.DataFrame) -> Optional[go.Figure]:
if original_df is None or synthetic_df is None:
return None
numeric_cols = original_df.select_dtypes(include=[np.number]).columns.tolist()
if not numeric_cols:
return None
n_cols = min(3, len(numeric_cols))
n_rows = (len(numeric_cols) + n_cols - 1) // n_cols
fig = make_subplots(rows=n_rows, cols=n_cols, subplot_titles=numeric_cols[: n_rows * n_cols])
for i, col in enumerate(numeric_cols[: n_rows * n_cols]):
row = i // n_cols + 1
col_idx = i % n_cols + 1
fig.add_trace(
go.Histogram(x=original_df[col], name=f"Original {col}", opacity=0.7, nbinsx=20),
row=row,
col=col_idx,
)
fig.add_trace(
go.Histogram(x=synthetic_df[col], name=f"Synthetic {col}", opacity=0.7, nbinsx=20),
row=row,
col=col_idx,
)
fig.update_layout(title="Original vs Synthetic Data Comparison", height=300 * n_rows, showlegend=True)
return fig
def download_csv(df: pd.DataFrame) -> Optional[str]:
if df is None or df.empty:
return None
# Write CSV to a stable path so DownloadButton can fetch it
path = "/mnt/data/synthetic_data.csv"
df.to_csv(path, index=False)
return path
# ---- UI ----
def create_interface():
with gr.Blocks(title="MOSTLY AI Synthetic Data Generator", theme=gr.themes.Soft()) as demo:
# Header image
gr.Image(
value="https://img.mailinblue.com/8225865/images/content_library/original/6880d164e4e4ea1a183ad4c0.png",
show_label=False,
elem_id="header-image",
)
# README
gr.Markdown(
"""
# Synthetic Data SDK by MOSTLY AI Demo Space
[Documentation](https://mostly-ai.github.io/mostlyai/) | [Technical White Paper](https://arxiv.org/abs/2508.00718) | [Usage Examples](https://mostly-ai.github.io/mostlyai/usage/) | [Free Cloud Service](https://app.mostly.ai/)
A Python toolkit for generating high-fidelity, privacy-safe synthetic data.
"""
)
with gr.Tab("Quick Start"):
gr.Markdown("### Initialize the SDK and upload your data")
with gr.Row():
with gr.Column():
init_btn = gr.Button("Initialize Mostly AI SDK", variant="primary")
init_status = gr.Textbox(label="Initialization Status", interactive=False)
with gr.Column():
gr.Markdown(
"""
**Next Steps:**
1. Initialize the SDK (click button above)
2. Go to "Upload Data and Train Model" tab to upload your CSV file
3. Train a model on your data
4. Generate synthetic data
"""
)
with gr.Tab("Upload Data and Train Model"):
gr.Markdown("### Upload your CSV file to generate synthetic data")
gr.Markdown(
"""
**File Requirements:**
- Format: CSV with header row
- Size: Optimized for Hugging Face Spaces (2 vCPU, 16GB RAM)
"""
)
file_upload = gr.File(label="Upload CSV File", file_types=[".csv"], file_count="single")
uploaded_data = gr.Dataframe(label="Uploaded Data", interactive=False)
memory_info = gr.Markdown(label="Memory Usage Info", visible=False)
with gr.Row():
with gr.Column():
model_name = gr.Textbox(
value="My Synthetic Model", label="Model Name", placeholder="Enter a name for your model"
)
epochs = gr.Slider(1, 200, value=100, step=1, label="Training Epochs")
max_training_time = gr.Slider(1, 1000, value=60, step=1, label="Maximum Training Time")
batch_size = gr.Slider(8, 1024, value=32, step=8, label="Training Batch Size")
value_protection = gr.Checkbox(label="Value Protection", info="Enable Value Protection")
train_btn = gr.Button("Train Model", variant="primary")
with gr.Column():
train_status = gr.Textbox(label="Training Status", interactive=False)
quality_report = gr.Textbox(label="Quality Report", lines=8, interactive=False)
with gr.Row():
get_report_btn = gr.Button("Get Quality Report", variant="secondary")
report_download_btn = gr.DownloadButton("Download Quality Report", visible=False)
with gr.Tab("Generate Data"):
gr.Markdown("### Generate synthetic data from your trained model")
with gr.Row():
with gr.Column():
gen_size = gr.Slider(10, 1000, value=100, step=10, label="Number of Records to Generate")
generate_btn = gr.Button("Generate Synthetic Data", variant="primary")
with gr.Column():
gen_status = gr.Textbox(label="Generation Status", interactive=False)
synthetic_data = gr.Dataframe(label="Synthetic Data", interactive=False)
with gr.Row():
download_btn = gr.DownloadButton("Download CSV", file_name="synthetic_data.csv", variant="secondary")
comparison_plot = gr.Plot(label="Data Comparison")
# README footer
gr.Markdown(
"""
**Modes of operation:**
- **LOCAL mode** trains and generates synthetic data on your own compute resources.
- **CLIENT mode** connects to a remote MOSTLY AI platform for training and generation.
- Generators trained locally can be imported to the platform for sharing and collaboration.
**Key resources managed by the SDK:**
- **Generators**: Train on your tabular or language data assets.
- **Synthetic datasets**: Generate any number of synthetic samples as needed.
- **Connectors**: Connect to organizational data sources for reading and writing data.
**Common intents and API primitives:**
- Train a generator: `g = mostly.train(config)`
- Generate records: `sd = mostly.generate(g, config)`
- Probe generator: `df = mostly.probe(g, config)`
- Connect to data source: `c = mostly.connect(config)`
The open source Synthetic Data SDK by MOSTLY AI powers the MOSTLY AI Platform and MOSTLY AI Assistant.
Sign up for free and try the [MOSTLY AI Platform](https://app.mostly.ai/) today!
"""
)
# ---- Event handlers ----
init_btn.click(initialize_sdk, outputs=[init_status])
train_btn.click(
train_model,
inputs=[uploaded_data, model_name, epochs, max_training_time, batch_size, value_protection],
outputs=[train_status],
)
# Build + expose quality report for download
get_report_btn.click(
get_quality_report_and_file,
outputs=[quality_report, report_download_btn],
)
# Generate data
generate_btn.click(generate_data, inputs=[gen_size], outputs=[synthetic_data, gen_status])
# Update CSV DownloadButton whenever synthetic data changes
synthetic_data.change(download_csv, inputs=[synthetic_data], outputs=[download_btn])
# Build comparison plot when both datasets are available
synthetic_data.change(
create_comparison_plot, inputs=[uploaded_data, synthetic_data], outputs=[comparison_plot]
)
# Handle file upload with size and column limits
def process_uploaded_file(file):
if file is None:
return None, "No file uploaded.", gr.update(visible=False)
try:
df = pd.read_csv(file.name)
success_msg = f"File uploaded successfully. {len(df)} rows × {len(df.columns)} columns"
mem_info = generator.estimate_memory_usage(df)
return df, success_msg, gr.update(value=mem_info, visible=True)
except Exception as e:
return None, f"Error reading file: {str(e)}", gr.update(visible=False)
file_upload.change(process_uploaded_file, inputs=[file_upload], outputs=[uploaded_data, train_status, memory_info])
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)