File size: 16,043 Bytes
8f42518
f376d1d
 
8f42518
f376d1d
8f42518
 
 
 
f376d1d
 
8f42518
f376d1d
 
 
 
 
 
 
 
 
 
8f42518
f376d1d
 
 
 
 
8f42518
 
f376d1d
 
 
 
 
5362aed
f376d1d
 
8f42518
 
 
 
 
 
 
 
 
 
f376d1d
 
5362aed
f376d1d
 
8f42518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5362aed
f376d1d
5362aed
8f42518
 
f376d1d
 
5362aed
f376d1d
 
 
5362aed
f376d1d
5362aed
8f42518
 
 
 
f376d1d
5362aed
f376d1d
8f42518
 
f376d1d
5362aed
8f42518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f376d1d
 
 
5362aed
8f42518
f376d1d
 
 
8f42518
5362aed
 
 
 
 
 
8f42518
f376d1d
5362aed
f376d1d
 
 
 
 
 
8f42518
f376d1d
 
 
8f42518
 
 
 
f376d1d
 
8f42518
 
 
 
 
 
 
 
f376d1d
8f42518
 
 
 
 
 
 
 
f376d1d
8f42518
5362aed
f376d1d
 
8f42518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f376d1d
 
8f42518
f376d1d
 
 
8f42518
f376d1d
 
8f42518
 
 
 
f376d1d
 
8f42518
f376d1d
8f42518
 
 
f376d1d
 
8f42518
 
 
f376d1d
8f42518
 
f376d1d
 
8f42518
 
f376d1d
 
8f42518
 
 
 
 
f376d1d
8f42518
f376d1d
 
8f42518
 
 
 
 
 
cc49d2d
 
8f42518
 
cc49d2d
5362aed
 
 
 
8f42518
 
 
5362aed
f376d1d
 
 
 
 
 
8f42518
 
f376d1d
 
 
 
 
8f42518
 
 
5362aed
f376d1d
8f42518
 
5362aed
 
 
8f42518
f376d1d
8f42518
 
f376d1d
 
8f42518
f376d1d
 
 
8f42518
f376d1d
 
 
 
 
 
 
 
8f42518
 
 
 
 
 
5362aed
f376d1d
 
 
 
 
 
 
8f42518
f376d1d
 
8f42518
f376d1d
0f86c02
8f42518
 
 
3a57c78
 
 
 
0f86c02
3a57c78
 
 
 
0f86c02
3a57c78
 
 
 
 
 
 
 
 
8f42518
f376d1d
8f42518
 
 
 
f376d1d
 
 
8f42518
f376d1d
8f42518
 
f376d1d
8f42518
 
f376d1d
8f42518
 
 
 
 
 
 
 
f376d1d
8f42518
f376d1d
8f42518
f376d1d
 
 
5362aed
f376d1d
 
5362aed
8f42518
 
f376d1d
5362aed
8f42518
 
 
f376d1d
 
8f42518
f376d1d
 
8f42518
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import os
import io
import base64
import warnings
from typing import Optional, Tuple

import gradio as gr
import pandas as pd
import numpy as np
import plotly.graph_objects as go
from plotly.subplots import make_subplots

warnings.filterwarnings("ignore")

# Import Mostly AI SDK
try:
    from mostlyai.sdk import MostlyAI
    MOSTLY_AI_AVAILABLE = True
except ImportError:
    MOSTLY_AI_AVAILABLE = False
    print("Warning: Mostly AI SDK not available. Please install with: pip install mostlyai[local]")


class SyntheticDataGenerator:
    def __init__(self):
        self.mostly = None
        self.generator = None
        self.original_data = None

    def initialize_mostly_ai(self) -> Tuple[bool, str]:
        """Initialize Mostly AI SDK"""
        if not MOSTLY_AI_AVAILABLE:
            return False, "Mostly AI SDK not installed. Please install with: pip install mostlyai[local]"
        try:
            self.mostly = MostlyAI(local=True, local_port=8080)
            return True, "Mostly AI SDK initialized successfully."
        except Exception as e:
            return False, f"Failed to initialize Mostly AI SDK: {str(e)}"

    def train_generator(
        self,
        data: pd.DataFrame,
        name: str,
        epochs: int = 10,
        max_training_time: int = 60,
        batch_size: int = 32,
        value_protection: bool = True,
    ) -> Tuple[bool, str]:
        """Train the synthetic data generator"""
        if not self.mostly:
            return False, "Mostly AI SDK not initialized. Please initialize the SDK first."
        try:
            self.original_data = data
            train_config = {
                "tables": [
                    {
                        "name": name,
                        "data": data,
                        "tabular_model_configuration": {
                            "max_epochs": epochs,
                            "max_training_time": max_training_time,
                            "value_protection": value_protection,
                            "batch_size": batch_size,
                        },
                    }
                ]
            }

            self.generator = self.mostly.train(config=train_config)
            return True, f"Training completed successfully. Model name: {name}"
        except Exception as e:
            return False, f"Training failed with error: {str(e)}"

    def generate_synthetic_data(self, size: int) -> Tuple[Optional[pd.DataFrame], str]:
        """Generate synthetic data"""
        if not self.generator:
            return None, "No trained generator available. Please train a model first."
        try:
            synthetic_data = self.mostly.generate(self.generator, size=size)
            df = synthetic_data.data()
            return df, f"Synthetic data generated successfully. {len(df)} records created."
        except Exception as e:
            return None, f"Synthetic data generation failed with error: {str(e)}"

    # ---- Report helpers (new) ----
    def get_quality_report_text(self) -> str:
        """Return a concise status about the report."""
        if not self.generator:
            return "No trained generator available. Please train a model first."
        try:
            _ = self.generator.reports(display=False)  # builds report internally
            return "Quality report generated. Use the button to download."
        except Exception as e:
            return f"Failed to generate quality report: {str(e)}"

    def get_quality_report_file(self) -> Optional[str]:
        """
        Generate/export the report and return a file path for download.
        Tries to find an existing ZIP; otherwise saves a TXT fallback.
        """
        if not self.generator:
            return None
        try:
            rep = self.generator.reports(display=False)

            # 1) If a string path to a .zip is returned
            if isinstance(rep, str) and rep.endswith(".zip") and os.path.exists(rep):
                return rep

            # 2) If the object exposes a path-like attribute
            for attr in ("archive_path", "zip_path", "path", "file_path"):
                if hasattr(rep, attr):
                    p = getattr(rep, attr)
                    if isinstance(p, str) and os.path.exists(p):
                        return p

            # 3) If the object can save/export itself
            target_zip = "/mnt/data/quality_report.zip"
            if hasattr(rep, "save"):
                try:
                    rep.save(target_zip)
                    if os.path.exists(target_zip):
                        return target_zip
                except Exception:
                    pass
            if hasattr(rep, "export"):
                try:
                    rep.export(target_zip)
                    if os.path.exists(target_zip):
                        return target_zip
                except Exception:
                    pass

            # 4) Fallback: write string representation
            target_txt = "/mnt/data/quality_report.txt"
            with open(target_txt, "w", encoding="utf-8") as f:
                f.write(str(rep))
            return target_txt

        except Exception:
            return None

    def estimate_memory_usage(self, df: pd.DataFrame) -> str:
        """Estimate memory usage for the dataset"""
        if df is None or df.empty:
            return "No data available to analyze."

        memory_mb = df.memory_usage(deep=True).sum() / (1024 * 1024)
        rows, cols = len(df), len(df.columns)
        estimated_training_mb = memory_mb * 4

        if memory_mb < 100:
            status = "Good"
        elif memory_mb < 500:
            status = "Large"
        else:
            status = "Very Large"

        return f"""
Memory Usage Estimate:
- Data size: {memory_mb:.1f} MB
- Estimated training memory: {estimated_training_mb:.1f} MB
- Status: {status}
- Rows: {rows:,} | Columns: {cols}
        """.strip()


# Initialize the generator
generator = SyntheticDataGenerator()

# ---- Wrapper functions for Gradio ----
def initialize_sdk() -> str:
    ok, msg = generator.initialize_mostly_ai()
    return ("Success: " if ok else "Error: ") + msg


def train_model(
    data: pd.DataFrame,
    model_name: str,
    epochs: int,
    max_training_time: int,
    batch_size: int,
    value_protection: bool,
) -> str:
    if data is None or data.empty:
        return "Error: No data provided. Please upload or create sample data first."
    ok, msg = generator.train_generator(
        data, model_name, epochs, max_training_time, batch_size, value_protection
    )
    return ("Success: " if ok else "Error: ") + msg


def generate_data(size: int) -> Tuple[Optional[pd.DataFrame], str]:
    synthetic_df, message = generator.generate_synthetic_data(size)
    status = "Success" if synthetic_df is not None else "Error"
    return synthetic_df, f"{status}: {message}"


def get_quality_report_and_file():
    """
    Return (status_text, download_component_update)
    The second value updates the DownloadButton with the file path and visibility.
    """
    status = generator.get_quality_report_text()
    path = generator.get_quality_report_file()
    if path:
        return status, gr.update(value=path, visible=True)
    else:
        # keep it hidden if we don't have a file
        return status, gr.update(visible=False)


def create_comparison_plot(original_df: pd.DataFrame, synthetic_df: pd.DataFrame) -> Optional[go.Figure]:
    if original_df is None or synthetic_df is None:
        return None

    numeric_cols = original_df.select_dtypes(include=[np.number]).columns.tolist()
    if not numeric_cols:
        return None

    n_cols = min(3, len(numeric_cols))
    n_rows = (len(numeric_cols) + n_cols - 1) // n_cols

    fig = make_subplots(rows=n_rows, cols=n_cols, subplot_titles=numeric_cols[: n_rows * n_cols])

    for i, col in enumerate(numeric_cols[: n_rows * n_cols]):
        row = i // n_cols + 1
        col_idx = i % n_cols + 1

        fig.add_trace(
            go.Histogram(x=original_df[col], name=f"Original {col}", opacity=0.7, nbinsx=20),
            row=row,
            col=col_idx,
        )
        fig.add_trace(
            go.Histogram(x=synthetic_df[col], name=f"Synthetic {col}", opacity=0.7, nbinsx=20),
            row=row,
            col=col_idx,
        )

    fig.update_layout(title="Original vs Synthetic Data Comparison", height=300 * n_rows, showlegend=True)
    return fig


def download_csv(df: pd.DataFrame) -> Optional[str]:
    if df is None or df.empty:
        return None
    # Write CSV to a stable path so DownloadButton can fetch it
    path = "/mnt/data/synthetic_data.csv"
    df.to_csv(path, index=False)
    return path


# ---- UI ----
def create_interface():
    with gr.Blocks(title="MOSTLY AI Synthetic Data Generator", theme=gr.themes.Soft()) as demo:
        # Header image
        gr.Image(
            value="https://img.mailinblue.com/8225865/images/content_library/original/6880d164e4e4ea1a183ad4c0.png",
            show_label=False,
            elem_id="header-image",
        )

        # README
        gr.Markdown(
            """
        # Synthetic Data SDK by MOSTLY AI Demo Space

        [Documentation](https://mostly-ai.github.io/mostlyai/) | [Technical White Paper](https://arxiv.org/abs/2508.00718) | [Usage Examples](https://mostly-ai.github.io/mostlyai/usage/) | [Free Cloud Service](https://app.mostly.ai/)
        
        A Python toolkit for generating high-fidelity, privacy-safe synthetic data. 
        """
        )

        with gr.Tab("Quick Start"):
            gr.Markdown("### Initialize the SDK and upload your data")
            with gr.Row():
                with gr.Column():
                    init_btn = gr.Button("Initialize Mostly AI SDK", variant="primary")
                    init_status = gr.Textbox(label="Initialization Status", interactive=False)
                with gr.Column():
                    gr.Markdown(
                        """
                    **Next Steps:**
                    1. Initialize the SDK (click button above)
                    2. Go to "Upload Data and Train Model" tab to upload your CSV file
                    3. Train a model on your data
                    4. Generate synthetic data
                    """
                    )

        with gr.Tab("Upload Data and Train Model"):
            gr.Markdown("### Upload your CSV file to generate synthetic data")
            gr.Markdown(
                """
            **File Requirements:**
            - Format: CSV with header row
            - Size: Optimized for Hugging Face Spaces (2 vCPU, 16GB RAM)
            """
            )

            file_upload = gr.File(label="Upload CSV File", file_types=[".csv"], file_count="single")
            uploaded_data = gr.Dataframe(label="Uploaded Data", interactive=False)
            memory_info = gr.Markdown(label="Memory Usage Info", visible=False)

            with gr.Row():
                with gr.Column():
                    model_name = gr.Textbox(
                        value="My Synthetic Model", label="Model Name", placeholder="Enter a name for your model"
                    )
                    epochs = gr.Slider(1, 200, value=100, step=1, label="Training Epochs")
                    max_training_time = gr.Slider(1, 1000, value=60, step=1, label="Maximum Training Time")
                    batch_size = gr.Slider(8, 1024, value=32, step=8, label="Training Batch Size")
                    value_protection = gr.Checkbox(label="Value Protection", info="Enable Value Protection")
                    train_btn = gr.Button("Train Model", variant="primary")
                with gr.Column():
                    train_status = gr.Textbox(label="Training Status", interactive=False)
                    quality_report = gr.Textbox(label="Quality Report", lines=8, interactive=False)

            with gr.Row():
                get_report_btn = gr.Button("Get Quality Report", variant="secondary")
                report_download_btn = gr.DownloadButton("Download Quality Report", visible=False)

        with gr.Tab("Generate Data"):
            gr.Markdown("### Generate synthetic data from your trained model")
            with gr.Row():
                with gr.Column():
                    gen_size = gr.Slider(10, 1000, value=100, step=10, label="Number of Records to Generate")
                    generate_btn = gr.Button("Generate Synthetic Data", variant="primary")
                with gr.Column():
                    gen_status = gr.Textbox(label="Generation Status", interactive=False)

            synthetic_data = gr.Dataframe(label="Synthetic Data", interactive=False)
            with gr.Row():
                download_btn = gr.DownloadButton("Download CSV", file_name="synthetic_data.csv", variant="secondary")
                comparison_plot = gr.Plot(label="Data Comparison")

        # README footer
        gr.Markdown(
            """
        **Modes of operation:**
        - **LOCAL mode** trains and generates synthetic data on your own compute resources.
        - **CLIENT mode** connects to a remote MOSTLY AI platform for training and generation.
        - Generators trained locally can be imported to the platform for sharing and collaboration.
        
        **Key resources managed by the SDK:**
        - **Generators**: Train on your tabular or language data assets.
        - **Synthetic datasets**: Generate any number of synthetic samples as needed.
        - **Connectors**: Connect to organizational data sources for reading and writing data.
        
        **Common intents and API primitives:**
        - Train a generator: `g = mostly.train(config)`
        - Generate records: `sd = mostly.generate(g, config)`
        - Probe generator: `df = mostly.probe(g, config)`
        - Connect to data source: `c = mostly.connect(config)`

        The open source Synthetic Data SDK by MOSTLY AI powers the MOSTLY AI Platform and MOSTLY AI Assistant.
        
        Sign up for free and try the [MOSTLY AI Platform](https://app.mostly.ai/) today!
        """
        )

        # ---- Event handlers ----
        init_btn.click(initialize_sdk, outputs=[init_status])

        train_btn.click(
            train_model,
            inputs=[uploaded_data, model_name, epochs, max_training_time, batch_size, value_protection],
            outputs=[train_status],
        )

        # Build + expose quality report for download
        get_report_btn.click(
            get_quality_report_and_file,
            outputs=[quality_report, report_download_btn],
        )

        # Generate data
        generate_btn.click(generate_data, inputs=[gen_size], outputs=[synthetic_data, gen_status])

        # Update CSV DownloadButton whenever synthetic data changes
        synthetic_data.change(download_csv, inputs=[synthetic_data], outputs=[download_btn])

        # Build comparison plot when both datasets are available
        synthetic_data.change(
            create_comparison_plot, inputs=[uploaded_data, synthetic_data], outputs=[comparison_plot]
        )

        # Handle file upload with size and column limits
        def process_uploaded_file(file):
            if file is None:
                return None, "No file uploaded.", gr.update(visible=False)
            try:
                df = pd.read_csv(file.name)
                success_msg = f"File uploaded successfully. {len(df)} rows × {len(df.columns)} columns"
                mem_info = generator.estimate_memory_usage(df)
                return df, success_msg, gr.update(value=mem_info, visible=True)
            except Exception as e:
                return None, f"Error reading file: {str(e)}", gr.update(visible=False)

        file_upload.change(process_uploaded_file, inputs=[file_upload], outputs=[uploaded_data, train_status, memory_info])

    return demo


if __name__ == "__main__":
    demo = create_interface()
    demo.launch(server_name="0.0.0.0", server_port=7860, share=True)