File size: 45,162 Bytes
d323f56
085a6f7
 
094b1a4
c421c59
b45d525
d323f56
085a6f7
 
a02c8c4
085a6f7
 
 
d323f56
ff7f2b3
bf0aa04
2baa1e7
085a6f7
 
 
 
 
 
 
 
 
 
094b1a4
a02c8c4
 
5b2e7ae
a02c8c4
 
 
 
 
094b1a4
 
 
 
 
a02c8c4
094b1a4
085a6f7
 
 
 
 
 
 
 
d323f56
094b1a4
 
 
a02c8c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
094b1a4
a02c8c4
 
 
094b1a4
 
 
d323f56
a02c8c4
d323f56
094b1a4
 
 
d323f56
094b1a4
 
 
d323f56
094b1a4
 
 
d323f56
094b1a4
 
 
d323f56
094b1a4
 
 
d323f56
094b1a4
 
a02c8c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5091532
a02c8c4
5091532
a02c8c4
5091532
a02c8c4
 
5091532
 
a02c8c4
0911f51
 
 
 
a02c8c4
5091532
 
 
 
 
 
 
 
 
 
 
 
a02c8c4
 
085a6f7
 
 
5091532
085a6f7
 
a02c8c4
5091532
 
a02c8c4
 
085a6f7
a02c8c4
5091532
 
a02c8c4
 
 
 
 
 
 
 
 
 
 
 
 
5091532
 
a02c8c4
 
5091532
085a6f7
5091532
085a6f7
094b1a4
a02c8c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
085a6f7
094b1a4
 
a02c8c4
 
 
028ea67
a02c8c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e7d078
094b1a4
 
085a6f7
094b1a4
 
 
 
 
 
 
 
 
 
085a6f7
094b1a4
 
 
 
 
 
a02c8c4
094b1a4
 
 
 
 
 
a02c8c4
 
 
085a6f7
a02c8c4
094b1a4
 
085a6f7
094b1a4
 
085a6f7
094b1a4
 
 
 
085a6f7
094b1a4
 
085a6f7
094b1a4
 
 
 
085a6f7
094b1a4
 
085a6f7
094b1a4
 
 
 
085a6f7
094b1a4
 
 
 
 
085a6f7
094b1a4
 
085a6f7
094b1a4
 
 
 
 
 
 
085a6f7
094b1a4
085a6f7
094b1a4
 
085a6f7
094b1a4
 
085a6f7
094b1a4
 
 
 
085a6f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c609645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a02c8c4
c609645
 
 
 
 
085a6f7
 
 
 
 
 
 
 
 
c609645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
085a6f7
 
 
 
c609645
 
085a6f7
 
c609645
 
085a6f7
 
 
c609645
085a6f7
 
a02c8c4
085a6f7
c609645
085a6f7
c609645
 
085a6f7
 
c609645
 
 
085a6f7
c609645
085a6f7
 
 
 
 
 
c609645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
085a6f7
c609645
 
 
085a6f7
 
c609645
 
085a6f7
c609645
085a6f7
 
 
 
 
c609645
 
 
 
 
 
 
 
 
 
 
 
 
 
085a6f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5091532
085a6f7
 
 
 
 
c609645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
085a6f7
 
 
 
 
 
 
 
 
 
c609645
 
 
085a6f7
 
 
c609645
085a6f7
 
 
 
 
 
 
c609645
085a6f7
 
 
 
 
 
 
 
c609645
085a6f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b45d525
 
094b1a4
 
d323f56
 
 
 
 
 
 
 
 
 
085a6f7
 
 
 
d323f56
085a6f7
c609645
 
 
 
 
d323f56
 
085a6f7
 
 
d323f56
a02c8c4
085a6f7
 
 
 
 
 
 
d323f56
 
 
 
 
085a6f7
 
5b2e7ae
085a6f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c609645
085a6f7
 
c609645
 
 
 
 
 
085a6f7
 
 
c609645
085a6f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c609645
085a6f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d323f56
085a6f7
d323f56
 
 
 
085a6f7
d323f56
 
 
085a6f7
 
 
 
 
 
 
c609645
085a6f7
 
 
 
d323f56
 
 
085a6f7
 
 
 
 
d323f56
085a6f7
 
c609645
085a6f7
 
 
 
 
d323f56
 
 
085a6f7
d323f56
b45d525
085a6f7
094b1a4
862d7cb
d323f56
 
 
a02c8c4
 
d323f56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
085a6f7
d323f56
 
 
 
085a6f7
d323f56
 
 
 
 
 
 
085a6f7
d323f56
 
085a6f7
d323f56
 
 
 
 
 
 
 
 
 
 
 
085a6f7
d323f56
 
 
 
a02c8c4
d323f56
862d7cb
d323f56
 
ca79af9
d323f56
 
 
 
 
 
 
 
 
085a6f7
d323f56
 
085a6f7
d323f56
 
 
 
085a6f7
d323f56
085a6f7
d323f56
 
 
 
 
b99f47a
d323f56
 
 
 
7d29857
d323f56
 
 
 
 
 
 
085a6f7
 
 
 
 
 
 
 
d323f56
 
 
 
 
 
 
 
 
085a6f7
d323f56
 
 
 
 
 
085a6f7
 
 
d323f56
 
 
 
 
 
 
 
 
 
 
7d29857
d323f56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c609645
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
# smartheal_ai_processor.py
# Verbose, instrumented version β€” preserves public class/function names
# Turn on deep logging: export LOGLEVEL=DEBUG SMARTHEAL_DEBUG=1

import os
import logging
from datetime import datetime
from typing import Optional, Dict, List, Tuple

# ---- Environment defaults (do NOT globally hint CUDA here) ----
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
LOGLEVEL = os.getenv("LOGLEVEL", "INFO").upper()
SMARTHEAL_DEBUG = os.getenv("SMARTHEAL_DEBUG", "0") == "1"

import cv2
import numpy as np
from PIL import Image
from PIL.ExifTags import TAGS

# --- Logging config ---
logging.basicConfig(
    level=getattr(logging, LOGLEVEL, logging.INFO),
    format="%(asctime)s - %(levelname)s - %(message)s",
)

def _log_kv(prefix: str, kv: Dict):
    logging.debug(prefix + " | " + " | ".join(f"{k}={v}" for k, v in kv.items()))

# --- Spaces GPU decorator (REQUIRED) ---
from spaces import GPU as _SPACES_GPU

@_SPACES_GPU(enable_queue=True)
def smartheal_gpu_stub(ping: int = 0) -> str:
    return "ready"

# ---- Paths / constants ----
UPLOADS_DIR = "uploads"
os.makedirs(UPLOADS_DIR, exist_ok=True)

HF_TOKEN = os.getenv("HF_TOKEN", None)
YOLO_MODEL_PATH = "src/best.pt"
SEG_MODEL_PATH = "src/segmentation_model.h5"   # optional; legacy .h5 supported
GUIDELINE_PDFS = ["src/eHealth in Wound Care.pdf", "src/IWGDF Guideline.pdf", "src/evaluation.pdf"]
DATASET_ID = "SmartHeal/wound-image-uploads"
DEFAULT_PX_PER_CM = 38.0
PX_PER_CM_MIN, PX_PER_CM_MAX = 5.0, 1200.0

# Segmentation preprocessing knobs
SEG_EXPECTS_RGB = os.getenv("SEG_EXPECTS_RGB", "1") == "1"  # most TF models trained on RGB
SEG_NORM = os.getenv("SEG_NORM", "0to1")                    # "0to1" | "imagenet"
SEG_THRESH = float(os.getenv("SEG_THRESH", "0.5"))

models_cache: Dict[str, object] = {}
knowledge_base_cache: Dict[str, object] = {}

# ---------- Utilities to prevent CUDA in main process ----------
from contextlib import contextmanager

@contextmanager
def _no_cuda_env():
    """
    Mask GPUs so any library imported/constructed in the main process
    cannot see CUDA (required for Spaces Stateless GPU).
    """
    prev = os.environ.get("CUDA_VISIBLE_DEVICES")
    os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
    try:
        yield
    finally:
        if prev is None:
            os.environ.pop("CUDA_VISIBLE_DEVICES", None)
        else:
            os.environ["CUDA_VISIBLE_DEVICES"] = prev

# ---------- Lazy imports (wrapped where needed) ----------
def _import_ultralytics():
    # Prevent Ultralytics from probing CUDA on import
    with _no_cuda_env():
        from ultralytics import YOLO
    return YOLO

def _import_tf_loader():
    import tensorflow as tf
    tf.config.set_visible_devices([], "GPU")
    from tensorflow.keras.models import load_model
    return load_model

def _import_hf_cls():
    from transformers import pipeline
    return pipeline

def _import_embeddings():
    from langchain_community.embeddings import HuggingFaceEmbeddings
    return HuggingFaceEmbeddings

def _import_langchain_pdf():
    from langchain_community.document_loaders import PyPDFLoader
    return PyPDFLoader

def _import_langchain_faiss():
    from langchain_community.vectorstores import FAISS
    return FAISS

def _import_hf_hub():
    from huggingface_hub import HfApi, HfFolder
    return HfApi, HfFolder

# ---------- SmartHeal prompts (system + user prefix) ----------
SMARTHEAL_SYSTEM_PROMPT = """\
You are SmartHeal Clinical Assistant, a wound-care decision-support system.
You analyze wound photographs and brief patient context to produce careful,
specific, guideline-informed recommendations WITHOUT diagnosing. You always:
- Use the measurements calculated by the vision pipeline as ground truth.
- Prefer concise, actionable steps tailored to exudate level, infection risk, and pain.
- Flag uncertainties and red flags that need escalation to a clinician.
- Avoid contraindicated advice; do not infer unseen comorbidities.
- Keep under 300 words and use the requested headings exactly.
- Tone: professional, clear, and conservative; no definitive medical claims.
- Safety: remind the user to seek clinician review for changes or red flags.
"""

SMARTHEAL_USER_PREFIX = """\
Patient: {patient_info}
Visual findings: type={wound_type}, size={length_cm}x{breadth_cm} cm, area={area_cm2} cm^2,
detection_conf={det_conf:.2f}, calibration={px_per_cm} px/cm.
Guideline context (snippets you can draw principles from; do not quote at length):
{guideline_context}
Write a structured answer with these headings exactly:
1. Clinical Summary (max 4 bullet points)
2. Likely Stage/Type (if uncertain, say 'uncertain')
3. Treatment Plan (specific dressing choices and frequency based on exudate/infection risk)
4. Red Flags (what to escalate and when)
5. Follow-up Cadence (days)
6. Notes (assumptions/uncertainties)
Keep to 220–300 words. Do NOT provide diagnosis. Avoid contraindicated advice.
"""

# ---------- MedGemma-only text generator ----------
@_SPACES_GPU(enable_queue=True)
def _medgemma_generate_gpu(prompt: str, model_id: str, max_new_tokens: int, token: Optional[str]):
    """
    Runs entirely inside a Spaces GPU worker. Uses Med-Gemma (text-only) to draft the report.
    """
    import torch
    from transformers import pipeline

    pipe = pipeline(
        "image-text-to-text",
        model="google/medgemma-4b-it",
        torch_dtype=torch.bfloat16,
        device="cuda",
    )
    out = pipe(
        prompt,
        max_new_tokens=max_new_tokens,
        do_sample=False,
        temperature=0.2,
        return_full_text=True,
    )
    text = (out[0].get("generated_text") if isinstance(out, list) else out).strip()
    # Remove the prompt echo if present
    if text.startswith(prompt):
        text = text[len(prompt):].lstrip()
    return text or "⚠️ Empty response"

def generate_medgemma_report(  # kept name so callers don't change
    patient_info: str,
    visual_results: Dict,
    guideline_context: str,
    image_pil: Image.Image,  # kept for signature compatibility; not used by MedGemma
    max_new_tokens: Optional[int] = None,
) -> str:
    """
    MedGemma (text-only) report generation.
    The image is analyzed by the vision pipeline; MedGemma formats clinical guidance text.
    """
    if os.getenv("SMARTHEAL_ENABLE_VLM", "1") != "1":
        return "⚠️ VLM disabled"

    # Default to a public Med-Gemma instruction-tuned model (update via env if you have access to another).
    model_id = os.getenv("SMARTHEAL_MEDGEMMA_MODEL", "google/med-gemma-2-2b-it")
    max_new_tokens = max_new_tokens or int(os.getenv("SMARTHEAL_VLM_MAX_TOKENS", "600"))

    uprompt = SMARTHEAL_USER_PREFIX.format(
        patient_info=patient_info,
        wound_type=visual_results.get("wound_type", "Unknown"),
        length_cm=visual_results.get("length_cm", 0),
        breadth_cm=visual_results.get("breadth_cm", 0),
        area_cm2=visual_results.get("surface_area_cm2", 0),
        det_conf=float(visual_results.get("detection_confidence", 0.0)),
        px_per_cm=visual_results.get("px_per_cm", "?"),
        guideline_context=(guideline_context or "")[:900],
    )

    # Compose a single text prompt
    prompt = f"{SMARTHEAL_SYSTEM_PROMPT}\n\n{uprompt}\n\nAnswer:"

    try:
        return _medgemma_generate_gpu(prompt, model_id, max_new_tokens, HF_TOKEN)
    except Exception as e:
        logging.error(f"MedGemma call failed: {e}")
        return "⚠️ VLM error"

# ---------- Input-shape helpers (avoid `.as_list()` on strings) ----------
def _shape_to_hw(shape) -> Tuple[Optional[int], Optional[int]]:
    try:
        if hasattr(shape, "as_list"):
            shape = shape.as_list()
    except Exception:
        pass
    if isinstance(shape, (tuple, list)):
        if len(shape) == 4:   # (None, H, W, C)
            H, W = shape[1], shape[2]
        elif len(shape) == 3: # (H, W, C)
            H, W = shape[0], shape[1]
        else:
            return (None, None)
        try: H = int(H) if (H is not None and str(H).lower() != "none") else None
        except Exception: H = None
        try: W = int(W) if (W is not None and str(W).lower() != "none") else None
        except Exception: W = None
        return (H, W)
    return (None, None)

def _get_model_input_hw(model, default_hw: Tuple[int, int] = (224, 224)) -> Tuple[int, int]:
    H, W = _shape_to_hw(getattr(model, "input_shape", None))
    if H and W:
        return H, W
    try:
        inputs = getattr(model, "inputs", None)
        if inputs:
            H, W = _shape_to_hw(inputs[0].shape)
            if H and W:
                return H, W
    except Exception:
        pass
    try:
        cfg = model.get_config() if hasattr(model, "get_config") else None
        if isinstance(cfg, dict):
            for layer in cfg.get("layers", []):
                conf = (layer or {}).get("config", {})
                cand = conf.get("batch_input_shape") or conf.get("batch_shape")
                H, W = _shape_to_hw(cand)
                if H and W:
                    return H, W
    except Exception:
        pass
    logging.warning(f"Could not resolve model input shape; using default {default_hw}.")
    return default_hw

# ---------- Initialize CPU models ----------
def load_yolo_model():
    YOLO = _import_ultralytics()
    with _no_cuda_env():
        model = YOLO(YOLO_MODEL_PATH)
    return model

def load_segmentation_model(path: Optional[str] = None):
    """
    Robust loader for legacy .h5 models across TF/Keras versions.
    Uses global SEG_MODEL_PATH by default.
    """
    import ast
    import tensorflow as tf
    tf.config.set_visible_devices([], "GPU")
    model_path = path or SEG_MODEL_PATH

    # Attempt 1: tf.keras with safe_mode=False
    try:
        m = tf.keras.models.load_model(model_path, compile=False, safe_mode=False)
        logging.info("βœ… Segmentation model loaded (tf.keras, safe_mode=False).")
        return m
    except Exception as e1:
        logging.warning(f"tf.keras load (safe_mode=False) failed: {e1}")

    # Attempt 2: patched InputLayer (drop legacy args; coerce string shapes)
    try:
        from tensorflow.keras.layers import InputLayer as _KInputLayer
        def _InputLayerPatched(*args, **kwargs):
            kwargs.pop("batch_shape", None)
            kwargs.pop("batch_input_shape", None)
            if "shape" in kwargs and isinstance(kwargs["shape"], str):
                try:
                    kwargs["shape"] = tuple(ast.literal_eval(kwargs["shape"]))
                except Exception:
                    kwargs.pop("shape", None)
            return _KInputLayer(**kwargs)
        m = tf.keras.models.load_model(
            model_path,
            compile=False,
            custom_objects={"InputLayer": _InputLayerPatched},
            safe_mode=False,
        )
        logging.info("βœ… Segmentation model loaded (patched InputLayer).")
        return m
    except Exception as e2:
        logging.warning(f"Patched InputLayer load failed: {e2}")

    # Attempt 3: keras 2 shim (tf_keras) if present
    try:
        import tf_keras
        m = tf_keras.models.load_model(model_path, compile=False)
        logging.info("βœ… Segmentation model loaded (tf_keras compat).")
        return m
    except Exception as e3:
        logging.warning(f"tf_keras load failed or not installed: {e3}")

    raise RuntimeError("Segmentation model could not be loaded; please convert/resave the model.")

def load_classification_pipeline():
    pipe = _import_hf_cls()
    return pipe("image-classification", model="Hemg/Wound-classification", token=HF_TOKEN, device="cpu")

def load_embedding_model():
    Emb = _import_embeddings()
    return Emb(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"})

def initialize_cpu_models() -> None:
    if HF_TOKEN:
        try:
            HfApi, HfFolder = _import_hf_hub()
            HfFolder.save_token(HF_TOKEN)
            logging.info("βœ… HF token set")
        except Exception as e:
            logging.warning(f"HF token save failed: {e}")

    if "det" not in models_cache:
        try:
            models_cache["det"] = load_yolo_model()
            logging.info("βœ… YOLO loaded (CPU; CUDA masked in main)")
        except Exception as e:
            logging.error(f"YOLO load failed: {e}")

    if "seg" not in models_cache:
        try:
            if os.path.exists(SEG_MODEL_PATH):
                m = load_segmentation_model()  # uses global path by default
                models_cache["seg"] = m
                th, tw = _get_model_input_hw(m, default_hw=(224, 224))
                oshape = getattr(m, "output_shape", None)
                logging.info(f"βœ… Segmentation model loaded (CPU) | input_hw=({th},{tw}) output_shape={oshape}")
            else:
                models_cache["seg"] = None
                logging.warning("Segmentation model file missing; skipping.")
        except Exception as e:
            models_cache["seg"] = None
            logging.warning(f"Segmentation unavailable: {e}")

    if "cls" not in models_cache:
        try:
            models_cache["cls"] = load_classification_pipeline()
            logging.info("βœ… Classifier loaded (CPU)")
        except Exception as e:
            models_cache["cls"] = None
            logging.warning(f"Classifier unavailable: {e}")

    if "embedding_model" not in models_cache:
        try:
            models_cache["embedding_model"] = load_embedding_model()
            logging.info("βœ… Embeddings loaded (CPU)")
        except Exception as e:
            models_cache["embedding_model"] = None
            logging.warning(f"Embeddings unavailable: {e}")

def setup_knowledge_base() -> None:
    if "vector_store" in knowledge_base_cache:
        return
    docs: List = []
    try:
        PyPDFLoader = _import_langchain_pdf()
        for pdf in GUIDELINE_PDFS:
            if os.path.exists(pdf):
                try:
                    docs.extend(PyPDFLoader(pdf).load())
                    logging.info(f"Loaded PDF: {pdf}")
                except Exception as e:
                    logging.warning(f"PDF load failed ({pdf}): {e}")
    except Exception as e:
        logging.warning(f"LangChain PDF loader unavailable: {e}")

    if docs and models_cache.get("embedding_model"):
        try:
            from langchain.text_splitter import RecursiveCharacterTextSplitter
            FAISS = _import_langchain_faiss()
            chunks = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100).split_documents(docs)
            knowledge_base_cache["vector_store"] = FAISS.from_documents(chunks, models_cache["embedding_model"])
            logging.info(f"βœ… Knowledge base ready ({len(chunks)} chunks)")
        except Exception as e:
            knowledge_base_cache["vector_store"] = None
            logging.warning(f"KB build failed: {e}")
    else:
        knowledge_base_cache["vector_store"] = None
        logging.warning("KB disabled (no docs or embeddings).")

initialize_cpu_models()
setup_knowledge_base()

# ---------- Calibration helpers ----------
def _exif_to_dict(pil_img: Image.Image) -> Dict[str, object]:
    out = {}
    try:
        exif = pil_img.getexif()
        if not exif:
            return out
        for k, v in exif.items():
            tag = TAGS.get(k, k)
            out[tag] = v
    except Exception:
        pass
    return out

def _to_float(val) -> Optional[float]:
    try:
        if val is None:
            return None
        if isinstance(val, tuple) and len(val) == 2:
            num, den = float(val[0]), float(val[1]) if float(val[1]) != 0 else 1.0
            return num / den
        return float(val)
    except Exception:
        return None

def _estimate_sensor_width_mm(f_mm: Optional[float], f35: Optional[float]) -> Optional[float]:
    if f_mm and f35 and f35 > 0:
        return 36.0 * f_mm / f35
    return None

def estimate_px_per_cm_from_exif(pil_img: Image.Image, default_px_per_cm: float = DEFAULT_PX_PER_CM) -> Tuple[float, Dict]:
    meta = {"used": "default", "f_mm": None, "f35": None, "sensor_w_mm": None, "distance_m": None}
    try:
        exif = _exif_to_dict(pil_img)
        f_mm = _to_float(exif.get("FocalLength"))
        f35 = _to_float(exif.get("FocalLengthIn35mmFilm") or exif.get("FocalLengthIn35mm"))
        subj_dist_m = _to_float(exif.get("SubjectDistance"))
        sensor_w_mm = _estimate_sensor_width_mm(f_mm, f35)
        meta.update({"f_mm": f_mm, "f35": f35, "sensor_w_mm": sensor_w_mm, "distance_m": subj_dist_m})

        if f_mm and sensor_w_mm and subj_dist_m and subj_dist_m > 0:
            w_px = pil_img.width
            field_w_mm = sensor_w_mm * (subj_dist_m * 1000.0) / f_mm
            field_w_cm = field_w_mm / 10.0
            px_per_cm = w_px / max(field_w_cm, 1e-6)
            px_per_cm = float(np.clip(px_per_cm, PX_PER_CM_MIN, PX_PER_CM_MAX))
            meta["used"] = "exif"
            return px_per_cm, meta
        return float(default_px_per_cm), meta
    except Exception:
        return float(default_px_per_cm), meta

# ---------- Segmentation helpers ----------
def _imagenet_norm(arr: np.ndarray) -> np.ndarray:
    mean = np.array([123.675, 116.28, 103.53], dtype=np.float32)
    std  = np.array([58.395, 57.12, 57.375], dtype=np.float32)
    return (arr.astype(np.float32) - mean) / std

def _preprocess_for_seg(bgr_roi: np.ndarray, target_hw: Tuple[int, int]) -> np.ndarray:
    H, W = target_hw
    resized = cv2.resize(bgr_roi, (W, H), interpolation=cv2.INTER_LINEAR)
    if SEG_EXPECTS_RGB:
        resized = cv2.cvtColor(resized, cv2.COLOR_BGR2RGB)
    if SEG_NORM.lower() == "imagenet":
        x = _imagenet_norm(resized)
    else:
        x = resized.astype(np.float32) / 255.0
    x = np.expand_dims(x, axis=0)  # (1,H,W,3)
    return x

def _to_prob(pred: np.ndarray) -> np.ndarray:
    p = np.squeeze(pred)
    pmin, pmax = float(p.min()), float(p.max())
    if pmax > 1.0 or pmin < 0.0:
        p = 1.0 / (1.0 + np.exp(-p))
    return p.astype(np.float32)

# ---- Adaptive threshold + GrabCut grow ----
def _adaptive_prob_threshold(p: np.ndarray) -> float:
    """
    Choose a threshold that avoids tiny blobs while not swallowing skin.
    Try Otsu and the 90th percentile, clamp to [0.25, 0.65], pick by area heuristic.
    """
    p01 = np.clip(p.astype(np.float32), 0, 1)
    p255 = (p01 * 255).astype(np.uint8)

    ret_otsu, _ = cv2.threshold(p255, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
    thr_otsu = float(np.clip(ret_otsu / 255.0, 0.25, 0.65))
    thr_pctl = float(np.clip(np.percentile(p01, 90), 0.25, 0.65))

    def area_frac(thr: float) -> float:
        return float((p01 >= thr).sum()) / float(p01.size)

    af_otsu = area_frac(thr_otsu)
    af_pctl = area_frac(thr_pctl)

    def score(af: float) -> float:
        target_low, target_high = 0.03, 0.10
        if af < target_low: return abs(af - target_low) * 3.0
        if af > target_high: return abs(af - target_high) * 1.5
        return 0.0

    return thr_otsu if score(af_otsu) <= score(af_pctl) else thr_pctl

def _grabcut_refine(bgr: np.ndarray, seed01: np.ndarray, iters: int = 3) -> np.ndarray:
    """Grow from a confident core into low-contrast margins."""
    h, w = bgr.shape[:2]
    gc = np.full((h, w), cv2.GC_PR_BGD, np.uint8)
    k = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
    seed_dil = cv2.dilate(seed01, k, iterations=1)
    gc[seed01.astype(bool)] = cv2.GC_PR_FGD
    gc[seed_dil.astype(bool)] = cv2.GC_FGD
    gc[0, :], gc[-1, :], gc[:, 0], gc[:, 1] = cv2.GC_BGD, cv2.GC_BGD, cv2.GC_BGD, cv2.GC_BGD
    bgdModel = np.zeros((1, 65), np.float64)
    fgdModel = np.zeros((1, 65), np.float64)
    cv2.grabCut(bgr, gc, None, bgdModel, fgdModel, iters, cv2.GC_INIT_WITH_MASK)
    return np.where((gc == cv2.GC_FGD) | (gc == cv2.GC_PR_FGD), 1, 0).astype(np.uint8)

def _fill_holes(mask01: np.ndarray) -> np.ndarray:
    h, w = mask01.shape[:2]
    ff = np.zeros((h + 2, w + 2), np.uint8)
    m = (mask01 * 255).astype(np.uint8).copy()
    cv2.floodFill(m, ff, (0, 0), 255)
    m_inv = cv2.bitwise_not(m)
    out = ((mask01 * 255) | m_inv) // 255
    return out.astype(np.uint8)

def _clean_mask(mask01: np.ndarray) -> np.ndarray:
    """Open β†’ Close β†’ Fill holes β†’ Largest component (no dilation)."""
    mask01 = (mask01 > 0).astype(np.uint8)
    k3 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
    k5 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
    mask01 = cv2.morphologyEx(mask01, cv2.MORPH_OPEN, k3, iterations=1)
    mask01 = cv2.morphologyEx(mask01, cv2.MORPH_CLOSE, k5, iterations=1)
    mask01 = _fill_holes(mask01)
    # Keep largest component only
    num, labels, stats, _ = cv2.connectedComponentsWithStats(mask01, 8)
    if num > 1:
        areas = stats[1:, cv2.CC_STAT_AREA]
        if areas.size:
            largest_idx = 1 + int(np.argmax(areas))
            mask01 = (labels == largest_idx).astype(np.uint8)
    return (mask01 > 0).astype(np.uint8)

# Global last debug dict (per-process)
_last_seg_debug: Dict[str, object] = {}

def segment_wound(image_bgr: np.ndarray, ts: str, out_dir: str) -> Tuple[np.ndarray, Dict[str, object]]:
    """
    TF model β†’ adaptive threshold on prob β†’ GrabCut grow β†’ cleanup.
    Fallback: KMeans-Lab.
    Returns (mask_uint8_0_255, debug_dict)
    """
    debug = {"used": None, "reason": None, "positive_fraction": 0.0,
             "thr": None, "heatmap_path": None, "roi_seen_by_model": None}

    seg_model = models_cache.get("seg", None)

    # --- Model path ---
    if seg_model is not None:
        try:
            th, tw = _get_model_input_hw(seg_model, default_hw=(224, 224))
            x = _preprocess_for_seg(image_bgr, (th, tw))
            roi_seen_path = None
            if SMARTHEAL_DEBUG:
                roi_seen_path = os.path.join(out_dir, f"roi_for_seg_{ts}.png")
                cv2.imwrite(roi_seen_path, image_bgr)

            pred = seg_model.predict(x, verbose=0)
            if isinstance(pred, (list, tuple)): pred = pred[0]
            p = _to_prob(pred)
            p = cv2.resize(p, (image_bgr.shape[1], image_bgr.shape[0]), interpolation=cv2.INTER_LINEAR)

            heatmap_path = None
            if SMARTHEAL_DEBUG:
                hm = (np.clip(p, 0, 1) * 255).astype(np.uint8)
                heat = cv2.applyColorMap(hm, cv2.COLORMAP_JET)
                heatmap_path = os.path.join(out_dir, f"seg_pred_heatmap_{ts}.png")
                cv2.imwrite(heatmap_path, heat)

            thr = _adaptive_prob_threshold(p)
            core01 = (p >= thr).astype(np.uint8)
            core_frac = float(core01.sum()) / float(core01.size)

            if core_frac < 0.005:
                thr2 = max(thr - 0.10, 0.15)
                core01 = (p >= thr2).astype(np.uint8)
                thr = thr2
                core_frac = float(core01.sum()) / float(core01.size)

            if core01.any():
                gc01 = _grabcut_refine(image_bgr, core01, iters=3)
                mask01 = _clean_mask(gc01)
            else:
                mask01 = np.zeros(core01.shape, np.uint8)

            pos_frac = float(mask01.sum()) / float(mask01.size)
            logging.info(f"SegModel USED | thr={float(thr):.2f} core_frac={core_frac:.4f} final_frac={pos_frac:.4f}")

            debug.update({
                "used": "tf_model",
                "reason": "ok",
                "positive_fraction": pos_frac,
                "thr": float(thr),
                "heatmap_path": heatmap_path,
                "roi_seen_by_model": roi_seen_path
            })
            return (mask01 * 255).astype(np.uint8), debug

        except Exception as e:
            logging.warning(f"⚠️ Segmentation model failed β†’ fallback. Reason: {e}")
            debug.update({"used": "fallback_kmeans", "reason": f"model_failed: {e}"})

    # --- Fallback: KMeans in Lab (reddest cluster as wound) ---
    Z = image_bgr.reshape((-1, 3)).astype(np.float32)
    criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
    _, labels, centers = cv2.kmeans(Z, 2, None, criteria, 5, cv2.KMEANS_PP_CENTERS)
    centers_u8 = centers.astype(np.uint8).reshape(1, 2, 3)
    centers_lab = cv2.cvtColor(centers_u8, cv2.COLOR_BGR2LAB)[0]
    wound_idx = int(np.argmax(centers_lab[:, 1]))  # maximize a* (red)
    mask01 = (labels.reshape(image_bgr.shape[:2]) == wound_idx).astype(np.uint8)
    mask01 = _clean_mask(mask01)

    pos_frac = float(mask01.sum()) / float(mask01.size)
    logging.info(f"KMeans USED | final_frac={pos_frac:.4f}")

    debug.update({
        "used": "fallback_kmeans",
        "reason": debug.get("reason") or "no_model",
        "positive_fraction": pos_frac,
        "thr": None
    })
    return (mask01 * 255).astype(np.uint8), debug

# ---------- Measurement + overlay helpers ----------
def largest_component_mask(binary01: np.ndarray, min_area_px: int = 50) -> np.ndarray:
    num, labels, stats, _ = cv2.connectedComponentsWithStats(binary01.astype(np.uint8), connectivity=8)
    if num <= 1:
        return binary01.astype(np.uint8)
    areas = stats[1:, cv2.CC_STAT_AREA]
    if areas.size == 0 or areas.max() < min_area_px:
        return binary01.astype(np.uint8)
    largest_idx = 1 + int(np.argmax(areas))
    return (labels == largest_idx).astype(np.uint8)

def measure_min_area_rect(mask01: np.ndarray, px_per_cm: float) -> Tuple[float, float, Tuple]:
    contours, _ = cv2.findContours(mask01.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    if not contours:
        return 0.0, 0.0, (None, None)
    cnt = max(contours, key=cv2.contourArea)
    rect = cv2.minAreaRect(cnt)
    (w_px, h_px) = rect[1]
    length_px, breadth_px = (max(w_px, h_px), min(h_px, w_px))
    length_cm = round(length_px / max(px_per_cm, 1e-6), 2)
    breadth_cm = round(breadth_px / max(px_per_cm, 1e-6), 2)
    box = cv2.boxPoints(rect).astype(int)
    return length_cm, breadth_cm, (box, rect[0])

def area_cm2_from_contour(mask01: np.ndarray, px_per_cm: float) -> Tuple[float, Optional[np.ndarray]]:
    """Area from largest polygon (sub-pixel); returns (area_cm2, contour)."""
    m = (mask01 > 0).astype(np.uint8)
    contours, _ = cv2.findContours(m, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    if not contours:
        return 0.0, None
    cnt = max(contours, key=cv2.contourArea)
    poly_area_px2 = float(cv2.contourArea(cnt))
    area_cm2 = round(poly_area_px2 / (max(px_per_cm, 1e-6) ** 2), 2)
    return area_cm2, cnt

def clamp_area_with_minrect(cnt: np.ndarray, px_per_cm: float, area_cm2_poly: float) -> float:
    rect = cv2.minAreaRect(cnt)
    (w_px, h_px) = rect[1]
    rect_area_px2 = float(max(w_px, 0.0) * max(h_px, 0.0))
    rect_area_cm2 = rect_area_px2 / (max(px_per_cm, 1e-6) ** 2)
    return round(min(area_cm2_poly, rect_area_cm2 * 1.05), 2)

def draw_measurement_overlay(
    base_bgr: np.ndarray,
    mask01: np.ndarray,
    rect_box: np.ndarray,
    length_cm: float,
    breadth_cm: float,
    thickness: int = 2
) -> np.ndarray:
    """
    1) Strong red mask overlay + white contour
    2) Min-area rectangle
    3) Double-headed arrows labeled Length/Width
    """
    overlay = base_bgr.copy()

    # Mask tint
    mask255 = (mask01 * 255).astype(np.uint8)
    mask3 = cv2.merge([mask255, mask255, mask255])
    red = np.zeros_like(overlay); red[:] = (0, 0, 255)
    alpha = 0.55
    tinted = cv2.addWeighted(overlay, 1 - alpha, red, alpha, 0)
    overlay = np.where(mask3 > 0, tinted, overlay)

    # Contour
    cnts, _ = cv2.findContours(mask255, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    if cnts:
        cv2.drawContours(overlay, cnts, -1, (255, 255, 255), 2)

    if rect_box is not None:
        cv2.polylines(overlay, [rect_box], True, (255, 255, 255), thickness)
        pts = rect_box.reshape(-1, 2)

        def midpoint(a, b): return (int((a[0] + b[0]) / 2), int((a[1] + b[1]) / 2))
        e = [np.linalg.norm(pts[i] - pts[(i + 1) % 4]) for i in range(4)]
        long_edge_idx = int(np.argmax(e))
        mids = [midpoint(pts[i], pts[(i + 1) % 4]) for i in range(4)]
        long_pair = (long_edge_idx, (long_edge_idx + 2) % 4)
        short_pair = ((long_edge_idx + 1) % 4, (long_edge_idx + 3) % 4)

        def draw_double_arrow(img, p1, p2):
            cv2.arrowedLine(img, p1, p2, (0, 0, 0), thickness + 2, tipLength=0.05)
            cv2.arrowedLine(img, p2, p1, (0, 0, 0), thickness + 2, tipLength=0.05)
            cv2.arrowedLine(img, p1, p2, (255, 255, 255), thickness, tipLength=0.05)
            cv2.arrowedLine(img, p2, p1, (255, 255, 255), thickness, tipLength=0.05)

        def put_label(text, anchor):
            org = (anchor[0] + 6, anchor[1] - 6)
            cv2.putText(overlay, text, org, cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 4, cv2.LINE_AA)
            cv2.putText(overlay, text, org, cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA)

        draw_double_arrow(overlay, mids[long_pair[0]], mids[long_pair[1]])
        draw_double_arrow(overlay, mids[short_pair[0]], mids[short_pair[1]])
        put_label(f"Length: {length_cm:.2f} cm", mids[long_pair[0]])
        put_label(f"Width:  {breadth_cm:.2f} cm", mids[short_pair[0]])

    return overlay

# ---------- AI PROCESSOR ----------
class AIProcessor:
    def __init__(self):
        self.models_cache = models_cache
        self.knowledge_base_cache = knowledge_base_cache
        self.uploads_dir = UPLOADS_DIR
        self.dataset_id = DATASET_ID
        self.hf_token = HF_TOKEN

    def _ensure_analysis_dir(self) -> str:
        out_dir = os.path.join(self.uploads_dir, "analysis")
        os.makedirs(out_dir, exist_ok=True)
        return out_dir

    def perform_visual_analysis(self, image_pil: Image.Image) -> Dict:
        """
        YOLO detect β†’ crop ROI β†’ segment_wound(ROI) β†’ clean mask β†’
        minAreaRect measurement (cm) using EXIF px/cm β†’ save outputs.
        """
        try:
            px_per_cm, exif_meta = estimate_px_per_cm_from_exif(image_pil, DEFAULT_PX_PER_CM)
            # Guardrails for calibration to avoid huge area blow-ups
            px_per_cm = float(np.clip(px_per_cm, 20.0, 350.0))
            if (exif_meta or {}).get("used") != "exif":
                logging.warning(f"Calibration fallback used: px_per_cm={px_per_cm:.2f} (default). Prefer ruler/Aruco for accuracy.")

            image_cv = cv2.cvtColor(np.array(image_pil.convert("RGB")), cv2.COLOR_RGB2BGR)

            # --- Detection ---
            det_model = self.models_cache.get("det")
            if det_model is None:
                raise RuntimeError("YOLO model not loaded")
            # Force CPU inference and avoid CUDA touch
            results = det_model.predict(image_cv, verbose=False, device="cpu")
            if (not results) or (not getattr(results[0], "boxes", None)) or (len(results[0].boxes) == 0):
                try:
                    import gradio as gr
                    raise gr.Error("No wound could be detected.")
                except Exception:
                    raise RuntimeError("No wound could be detected.")

            box = results[0].boxes[0].xyxy[0].cpu().numpy().astype(int)
            x1, y1, x2, y2 = [int(v) for v in box]
            x1, y1 = max(0, x1), max(0, y1)
            x2, y2 = min(image_cv.shape[1], x2), min(image_cv.shape[0], y2)
            roi = image_cv[y1:y2, x1:x2].copy()
            if roi.size == 0:
                try:
                    import gradio as gr
                    raise gr.Error("Detected ROI is empty.")
                except Exception:
                    raise RuntimeError("Detected ROI is empty.")

            out_dir = self._ensure_analysis_dir()
            ts = datetime.now().strftime("%Y%m%d_%H%M%S")

            # --- Segmentation (model-first + KMeans fallback) ---
            mask_u8_255, seg_debug = segment_wound(roi, ts, out_dir)
            mask01 = (mask_u8_255 > 127).astype(np.uint8)

            if mask01.any():
                mask01 = _clean_mask(mask01)
                logging.debug(f"Mask postproc: px_after={int(mask01.sum())}")

            # --- Measurement (accurate & conservative) ---
            if mask01.any():
                length_cm, breadth_cm, (box_pts, _) = measure_min_area_rect(mask01, px_per_cm)
                area_poly_cm2, largest_cnt = area_cm2_from_contour(mask01, px_per_cm)
                if largest_cnt is not None:
                    surface_area_cm2 = clamp_area_with_minrect(largest_cnt, px_per_cm, area_poly_cm2)
                else:
                    surface_area_cm2 = area_poly_cm2

                anno_roi = draw_measurement_overlay(roi, mask01, box_pts, length_cm, breadth_cm)
                segmentation_empty = False
            else:
                # Fallback if seg failed: use ROI dimensions
                h_px = max(0, y2 - y1); w_px = max(0, x2 - x1)
                length_cm = round(max(h_px, w_px) / px_per_cm, 2)
                breadth_cm = round(min(h_px, w_px) / px_per_cm, 2)
                surface_area_cm2 = round((h_px * w_px) / (px_per_cm ** 2), 2)
                anno_roi = roi.copy()
                cv2.rectangle(anno_roi, (2, 2), (anno_roi.shape[1]-3, anno_roi.shape[0]-3), (0, 0, 255), 3)
                cv2.line(anno_roi, (0, 0), (anno_roi.shape[1]-1, anno_roi.shape[0]-1), (0, 0, 255), 2)
                cv2.line(anno_roi, (anno_roi.shape[1]-1, 0), (0, anno_roi.shape[0]-1), (0, 0, 255), 2)
                box_pts = None
                segmentation_empty = True

            # --- Save visualizations ---
            original_path = os.path.join(out_dir, f"original_{ts}.png")
            cv2.imwrite(original_path, image_cv)

            det_vis = image_cv.copy()
            cv2.rectangle(det_vis, (x1, y1), (x2, y2), (0, 255, 0), 2)
            detection_path = os.path.join(out_dir, f"detection_{ts}.png")
            cv2.imwrite(detection_path, det_vis)

            roi_mask_path = os.path.join(out_dir, f"roi_mask_{ts}.png")
            cv2.imwrite(roi_mask_path, (mask01 * 255).astype(np.uint8))

            # ROI overlay (mask tint + contour, without arrows)
            mask255 = (mask01 * 255).astype(np.uint8)
            mask3   = cv2.merge([mask255, mask255, mask255])
            red     = np.zeros_like(roi); red[:] = (0, 0, 255)
            alpha   = 0.55
            tinted  = cv2.addWeighted(roi, 1 - alpha, red, alpha, 0)
            if mask255.any():
                roi_overlay = np.where(mask3 > 0, tinted, roi)
                cnts, _ = cv2.findContours(mask255, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
                cv2.drawContours(roi_overlay, cnts, -1, (255, 255, 255), 2)
            else:
                roi_overlay = anno_roi

            seg_full = image_cv.copy()
            seg_full[y1:y2, x1:x2] = roi_overlay
            segmentation_path = os.path.join(out_dir, f"segmentation_{ts}.png")
            cv2.imwrite(segmentation_path, seg_full)

            segmentation_roi_path = os.path.join(out_dir, f"segmentation_roi_{ts}.png")
            cv2.imwrite(segmentation_roi_path, roi_overlay)

            # Annotated (mask + arrows + labels) in full-frame
            anno_full = image_cv.copy()
            anno_full[y1:y2, x1:x2] = anno_roi
            annotated_seg_path = os.path.join(out_dir, f"segmentation_annotated_{ts}.png")
            cv2.imwrite(annotated_seg_path, anno_full)

            # --- Optional classification ---
            wound_type = "Unknown"
            cls_pipe = self.models_cache.get("cls")
            if cls_pipe is not None:
                try:
                    preds = cls_pipe(Image.fromarray(cv2.cvtColor(roi, cv2.COLOR_BGR2RGB)))
                    if preds:
                        wound_type = max(preds, key=lambda x: x.get("score", 0)).get("label", "Unknown")
                except Exception as e:
                    logging.warning(f"Classification failed: {e}")

            # Log end-of-seg summary
            seg_summary = {
                "seg_used": seg_debug.get("used"),
                "seg_reason": seg_debug.get("reason"),
                "positive_fraction": round(float(seg_debug.get("positive_fraction", 0.0)), 6),
                "threshold": seg_debug.get("thr"),
                "segmentation_empty": segmentation_empty,
                "exif_px_per_cm": round(px_per_cm, 3),
            }
            _log_kv("SEG_SUMMARY", seg_summary)

            return {
                "wound_type": wound_type,
                "length_cm": length_cm,
                "breadth_cm": breadth_cm,
                "surface_area_cm2": surface_area_cm2,
                "px_per_cm": round(px_per_cm, 2),
                "calibration_meta": exif_meta,
                "detection_confidence": float(results[0].boxes.conf[0].cpu().item())
                    if getattr(results[0].boxes, "conf", None) is not None else 0.0,
                "detection_image_path": detection_path,
                "segmentation_image_path": annotated_seg_path,
                "segmentation_annotated_path": annotated_seg_path,
                "segmentation_roi_path": segmentation_roi_path,
                "roi_mask_path": roi_mask_path,
                "segmentation_empty": segmentation_empty,
                "segmentation_debug": seg_debug,
                "original_image_path": original_path,
            }
        except Exception as e:
            logging.error(f"Visual analysis failed: {e}", exc_info=True)
            raise

    # ---------- Knowledge base + reporting ----------
    def query_guidelines(self, query: str) -> str:
        try:
            vs = self.knowledge_base_cache.get("vector_store")
            if not vs:
                return "Knowledge base is not available."
            retriever = vs.as_retriever(search_kwargs={"k": 5})
            docs = retriever.invoke(query)
            lines: List[str] = []
            for d in docs:
                src = (d.metadata or {}).get("source", "N/A")
                txt = (d.page_content or "")[:300]
                lines.append(f"Source: {src}\nContent: {txt}...")
            return "\n\n".join(lines) if lines else "No relevant guideline snippets found."
        except Exception as e:
            logging.warning(f"Guidelines query failed: {e}")
            return f"Guidelines query failed: {str(e)}"

    def _generate_fallback_report(self, patient_info: str, visual_results: Dict, guideline_context: str) -> str:
        return f"""# 🩺 SmartHeal AI - Comprehensive Wound Analysis Report
## πŸ“‹ Patient Information
{patient_info}
## πŸ” Visual Analysis Results
- **Wound Type**: {visual_results.get('wound_type', 'Unknown')}
- **Dimensions**: {visual_results.get('length_cm', 0)} cm Γ— {visual_results.get('breadth_cm', 0)} cm
- **Surface Area**: {visual_results.get('surface_area_cm2', 0)} cmΒ²
- **Detection Confidence**: {visual_results.get('detection_confidence', 0):.1%}
- **Calibration**: {visual_results.get('px_per_cm','?')} px/cm ({(visual_results.get('calibration_meta') or {}).get('used','default')})
## πŸ“Š Analysis Images
- **Original**: {visual_results.get('original_image_path', 'N/A')}
- **Detection**: {visual_results.get('detection_image_path', 'N/A')}
- **Segmentation**: {visual_results.get('segmentation_image_path', 'N/A')}
- **Annotated**: {visual_results.get('segmentation_annotated_path', 'N/A')}
## 🎯 Clinical Summary
Automated analysis provides quantitative measurements; verify via clinical examination.
## πŸ’Š Recommendations
- Cleanse wound gently; select dressing per exudate/infection risk
- Debride necrotic tissue if indicated (clinical decision)
- Document with serial photos and measurements
## πŸ“… Monitoring
- Daily in week 1, then every 2–3 days (or as indicated)
- Weekly progress review
## πŸ“š Guideline Context
{(guideline_context or '')[:800]}{"..." if guideline_context and len(guideline_context) > 800 else ''}
**Disclaimer:** Automated, for decision support only. Verify clinically.
"""

    def generate_final_report(
        self,
        patient_info: str,
        visual_results: Dict,
        guideline_context: str,
        image_pil: Image.Image,
        max_new_tokens: Optional[int] = None,
    ) -> str:
        try:
            report = generate_medgemma_report(
                patient_info, visual_results, guideline_context, image_pil, max_new_tokens
            )
            if report and report.strip() and not report.startswith(("⚠️", "❌")):
                return report
            logging.warning("VLM unavailable/invalid; using fallback.")
            return self._generate_fallback_report(patient_info, visual_results, guideline_context)
        except Exception as e:
            logging.error(f"Report generation failed: {e}")
            return self._generate_fallback_report(patient_info, visual_results, guideline_context)

    def save_and_commit_image(self, image_pil: Image.Image) -> str:
        try:
            os.makedirs(self.uploads_dir, exist_ok=True)
            ts = datetime.now().strftime("%Y%m%d_%H%M%S")
            filename = f"{ts}.png"
            path = os.path.join(self.uploads_dir, filename)
            image_pil.convert("RGB").save(path)
            logging.info(f"βœ… Image saved locally: {path}")

            if HF_TOKEN and DATASET_ID:
                try:
                    HfApi, HfFolder = _import_hf_hub()
                    HfFolder.save_token(HF_TOKEN)
                    api = HfApi()
                    api.upload_file(
                        path_or_fileobj=path,
                        path_in_repo=f"images/{filename}",
                        repo_id=DATASET_ID,
                        repo_type="dataset",
                        token=HF_TOKEN,
                        commit_message=f"Upload wound image: {filename}",
                    )
                    logging.info("βœ… Image committed to HF dataset")
                except Exception as e:
                    logging.warning(f"HF upload failed: {e}")

            return path
        except Exception as e:
            logging.error(f"Failed to save/commit image: {e}")
            return ""

    def full_analysis_pipeline(self, image_pil: Image.Image, questionnaire_data: Dict) -> Dict:
        try:
            saved_path = self.save_and_commit_image(image_pil)
            visual_results = self.perform_visual_analysis(image_pil)

            pi = questionnaire_data or {}
            patient_info = (
                f"Age: {pi.get('age','N/A')}, "
                f"Diabetic: {pi.get('diabetic','N/A')}, "
                f"Allergies: {pi.get('allergies','N/A')}, "
                f"Date of Wound: {pi.get('date_of_injury','N/A')}, "
                f"Professional Care: {pi.get('professional_care','N/A')}, "
                f"Oozing/Bleeding: {pi.get('oozing_bleeding','N/A')}, "
                f"Infection: {pi.get('infection','N/A')}, "
                f"Moisture: {pi.get('moisture','N/A')}"
            )

            query = (
                f"best practices for managing a {visual_results.get('wound_type','Unknown')} "
                f"with moisture '{pi.get('moisture','unknown')}' and infection '{pi.get('infection','unknown')}' "
                f"in a diabetic status '{pi.get('diabetic','unknown')}'"
            )
            guideline_context = self.query_guidelines(query)

            report = self.generate_final_report(patient_info, visual_results, guideline_context, image_pil)

            return {
                "success": True,
                "visual_analysis": visual_results,
                "report": report,
                "saved_image_path": saved_path,
                "guideline_context": (guideline_context or "")[:500] + (
                    "..." if guideline_context and len(guideline_context) > 500 else ""
                ),
            }
        except Exception as e:
            logging.error(f"Pipeline error: {e}")
            return {
                "success": False,
                "error": str(e),
                "visual_analysis": {},
                "report": f"Analysis failed: {str(e)}",
                "saved_image_path": None,
                "guideline_context": "",
            }

    def analyze_wound(self, image, questionnaire_data: Dict) -> Dict:
        try:
            if isinstance(image, str):
                if not os.path.exists(image):
                    raise ValueError(f"Image file not found: {image}")
                image_pil = Image.open(image)
            elif isinstance(image, Image.Image):
                image_pil = image
            elif isinstance(image, np.ndarray):
                image_pil = Image.fromarray(image)
            else:
                raise ValueError(f"Unsupported image type: {type(image)}")

            return self.full_analysis_pipeline(image_pil, questionnaire_data or {})
        except Exception as e:
            logging.error(f"Wound analysis error: {e}")
            return {
                "success": False,
                "error": str(e),
                "visual_analysis": {},
                "report": f"Analysis initialization failed: {str(e)}",
                "saved_image_path": None,
                "guideline_context": "",
            }