Spaces:
Running
Running
Update src/ai_processor.py
Browse files- src/ai_processor.py +96 -123
src/ai_processor.py
CHANGED
|
@@ -1,6 +1,10 @@
|
|
| 1 |
# smartheal_ai_processor.py
|
| 2 |
-
#
|
| 3 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
import os
|
| 6 |
import time
|
|
@@ -8,12 +12,12 @@ import logging
|
|
| 8 |
from datetime import datetime
|
| 9 |
from typing import Optional, Dict, List, Tuple
|
| 10 |
|
| 11 |
-
#
|
| 12 |
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
|
| 13 |
|
| 14 |
import cv2
|
| 15 |
import numpy as np
|
| 16 |
-
from PIL import Image
|
| 17 |
from PIL.ExifTags import TAGS
|
| 18 |
|
| 19 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
|
@@ -26,8 +30,8 @@ YOLO_MODEL_PATH = "src/best.pt"
|
|
| 26 |
SEG_MODEL_PATH = "src/segmentation_model.h5" # optional
|
| 27 |
GUIDELINE_PDFS = ["src/eHealth in Wound Care.pdf", "src/IWGDF Guideline.pdf", "src/evaluation.pdf"]
|
| 28 |
DATASET_ID = "SmartHeal/wound-image-uploads"
|
| 29 |
-
DEFAULT_PX_PER_CM = 38.0
|
| 30 |
-
PX_PER_CM_MIN, PX_PER_CM_MAX = 5.0, 1200.0
|
| 31 |
|
| 32 |
models_cache: Dict[str, object] = {}
|
| 33 |
knowledge_base_cache: Dict[str, object] = {}
|
|
@@ -39,7 +43,7 @@ def _import_ultralytics():
|
|
| 39 |
|
| 40 |
def _import_tf_loader():
|
| 41 |
import tensorflow as tf
|
| 42 |
-
tf.config.set_visible_devices([], "GPU") # force
|
| 43 |
from tensorflow.keras.models import load_model
|
| 44 |
return load_model
|
| 45 |
|
|
@@ -63,8 +67,7 @@ def _import_hf_hub():
|
|
| 63 |
from huggingface_hub import HfApi, HfFolder
|
| 64 |
return HfApi, HfFolder
|
| 65 |
|
| 66 |
-
# ---------- Conditional Spaces GPU
|
| 67 |
-
# Avoid scheduling a GPU worker when CUDA is not available (prevents cudaGetDeviceCount crash)
|
| 68 |
def _cuda_available() -> bool:
|
| 69 |
try:
|
| 70 |
import torch
|
|
@@ -81,7 +84,6 @@ def _generate_medgemma_report_core(
|
|
| 81 |
) -> str:
|
| 82 |
try:
|
| 83 |
from transformers import pipeline
|
| 84 |
-
# Use CPU by default; if CUDA truly available, pipeline can still map automatically
|
| 85 |
pipe = pipeline(
|
| 86 |
"image-text-to-text",
|
| 87 |
model="google/medgemma-4b-it",
|
|
@@ -123,8 +125,6 @@ def _generate_medgemma_report_core(
|
|
| 123 |
logging.error(f"❌ MedGemma generation error: {e}")
|
| 124 |
return "⚠️ GPU/LLM worker unavailable"
|
| 125 |
|
| 126 |
-
# Preserve the SAME public function name.
|
| 127 |
-
# Only decorate with @spaces.GPU if CUDA is truly available.
|
| 128 |
try:
|
| 129 |
import spaces
|
| 130 |
if _cuda_available():
|
|
@@ -145,7 +145,6 @@ try:
|
|
| 145 |
image_pil: Image.Image,
|
| 146 |
max_new_tokens: Optional[int] = None,
|
| 147 |
) -> str:
|
| 148 |
-
# no decorator -> no GPU worker init -> no cudaGetDeviceCount crash
|
| 149 |
return _generate_medgemma_report_core(patient_info, visual_results, guideline_context, image_pil, max_new_tokens)
|
| 150 |
except Exception:
|
| 151 |
def generate_medgemma_report(
|
|
@@ -289,7 +288,6 @@ def estimate_px_per_cm_from_exif(pil_img: Image.Image, default_px_per_cm: float
|
|
| 289 |
f35 = _to_float(exif.get("FocalLengthIn35mmFilm") or exif.get("FocalLengthIn35mm"))
|
| 290 |
subj_dist_m = _to_float(exif.get("SubjectDistance"))
|
| 291 |
sensor_w_mm = _estimate_sensor_width_mm(f_mm, f35)
|
| 292 |
-
|
| 293 |
meta.update({"f_mm": f_mm, "f35": f35, "sensor_w_mm": sensor_w_mm, "distance_m": subj_dist_m})
|
| 294 |
|
| 295 |
if f_mm and sensor_w_mm and subj_dist_m and subj_dist_m > 0:
|
|
@@ -304,64 +302,65 @@ def estimate_px_per_cm_from_exif(pil_img: Image.Image, default_px_per_cm: float
|
|
| 304 |
except Exception:
|
| 305 |
return float(default_px_per_cm), meta
|
| 306 |
|
| 307 |
-
# ----------
|
| 308 |
-
def
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
shp = seg_model.inputs[0].shape
|
| 315 |
-
return int(shp[1]), int(shp[2])
|
| 316 |
-
except Exception:
|
| 317 |
-
pass
|
| 318 |
-
raise ValueError(f"Cannot infer (H,W) from segmentation model input shape: {shp}")
|
| 319 |
-
|
| 320 |
-
def _to_prob(mask_pred: np.ndarray) -> np.ndarray:
|
| 321 |
-
m = np.array(mask_pred)
|
| 322 |
-
# squeeze batch/channel dims
|
| 323 |
-
while m.ndim > 2:
|
| 324 |
-
if m.shape[0] == 1:
|
| 325 |
-
m = np.squeeze(m, axis=0)
|
| 326 |
-
if m.ndim > 2 and m.shape[-1] == 1:
|
| 327 |
-
m = np.squeeze(m, axis=-1)
|
| 328 |
-
if m.ndim == 3 and m.shape[-1] > 1:
|
| 329 |
-
# pick the most active channel
|
| 330 |
-
ch = np.argmax(m.reshape(-1, m.shape[-1]).mean(0))
|
| 331 |
-
m = m[..., ch]
|
| 332 |
-
if m.ndim <= 2:
|
| 333 |
-
break
|
| 334 |
-
m = m.astype("float32")
|
| 335 |
-
# if looks like logits -> sigmoid
|
| 336 |
-
if m.max() > 1.5 or m.min() < -0.5:
|
| 337 |
-
m = 1.0 / (1.0 + np.exp(-m))
|
| 338 |
-
return np.clip(m, 0.0, 1.0)
|
| 339 |
-
|
| 340 |
-
def _adaptive_threshold(prob: np.ndarray, hard: float = 0.5) -> np.ndarray:
|
| 341 |
-
if (prob >= hard).sum() > 0:
|
| 342 |
-
return (prob >= hard).astype("uint8")
|
| 343 |
-
# try Otsu
|
| 344 |
-
m8 = (np.clip(prob, 0, 1) * 255).astype("uint8")
|
| 345 |
-
try:
|
| 346 |
-
# we only need the threshold value _
|
| 347 |
-
_, _ = cv2.threshold(m8, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
| 348 |
-
return (m8 >= _).astype("uint8")
|
| 349 |
-
except Exception:
|
| 350 |
-
p = float(np.percentile(prob, 99.0))
|
| 351 |
-
return (prob >= max(0.2, min(0.9, p))).astype("uint8")
|
| 352 |
|
| 353 |
-
|
| 354 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
if num <= 1:
|
| 356 |
-
return
|
| 357 |
areas = stats[1:, cv2.CC_STAT_AREA]
|
| 358 |
if areas.size == 0 or areas.max() < min_area_px:
|
| 359 |
-
return
|
| 360 |
largest_idx = 1 + int(np.argmax(areas))
|
| 361 |
return (labels == largest_idx).astype(np.uint8)
|
| 362 |
|
| 363 |
-
def measure_min_area_rect(
|
| 364 |
-
contours, _ = cv2.findContours(
|
| 365 |
if not contours:
|
| 366 |
return 0.0, 0.0, (None, None)
|
| 367 |
cnt = max(contours, key=cv2.contourArea)
|
|
@@ -373,8 +372,8 @@ def measure_min_area_rect(mask: np.ndarray, px_per_cm: float) -> Tuple[float, fl
|
|
| 373 |
box = cv2.boxPoints(rect).astype(int)
|
| 374 |
return length_cm, breadth_cm, (box, rect[0])
|
| 375 |
|
| 376 |
-
def count_area_cm2(
|
| 377 |
-
px_count = float(
|
| 378 |
return round(px_count / (max(px_per_cm, 1e-6) ** 2), 2)
|
| 379 |
|
| 380 |
def draw_measurement_overlay(
|
|
@@ -386,13 +385,11 @@ def draw_measurement_overlay(
|
|
| 386 |
thickness: int = 2
|
| 387 |
) -> np.ndarray:
|
| 388 |
overlay = base_bgr.copy()
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
blended = cv2.addWeighted(overlay, 1.0, colored, 0.3, 0)
|
| 392 |
m3 = np.dstack([mask01 * 255] * 3).astype("uint8")
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
overlay = cv2.add(bg, blended_masked)
|
| 396 |
|
| 397 |
if rect_box is not None:
|
| 398 |
cv2.polylines(overlay, [rect_box], True, (255, 255, 255), thickness)
|
|
@@ -410,15 +407,14 @@ def draw_measurement_overlay(
|
|
| 410 |
cv2.arrowedLine(img, p1, p2, (255, 255, 255), thickness, tipLength=0.05)
|
| 411 |
cv2.arrowedLine(img, p2, p1, (255, 255, 255), thickness, tipLength=0.05)
|
| 412 |
|
| 413 |
-
draw_arrow(overlay, mids[long_pair[0]], mids[long_pair[1]])
|
| 414 |
-
draw_arrow(overlay, mids[short_pair[0]], mids[short_pair[1]])
|
| 415 |
-
|
| 416 |
def put_label(text, org):
|
| 417 |
cv2.putText(overlay, text, (org[0] + 4, org[1] - 4),
|
| 418 |
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 4, cv2.LINE_AA)
|
| 419 |
cv2.putText(overlay, text, (org[0] + 4, org[1] - 4),
|
| 420 |
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA)
|
| 421 |
|
|
|
|
|
|
|
| 422 |
put_label(f"{length_cm:.2f} cm", mids[long_pair[0]])
|
| 423 |
put_label(f"{breadth_cm:.2f} cm", mids[short_pair[0]])
|
| 424 |
return overlay
|
|
@@ -439,24 +435,20 @@ class AIProcessor:
|
|
| 439 |
|
| 440 |
def perform_visual_analysis(self, image_pil: Image.Image) -> Dict:
|
| 441 |
"""
|
| 442 |
-
|
| 443 |
-
|
| 444 |
"""
|
| 445 |
try:
|
| 446 |
-
# --- Auto calibration from EXIF ---
|
| 447 |
px_per_cm, exif_meta = estimate_px_per_cm_from_exif(image_pil, DEFAULT_PX_PER_CM)
|
| 448 |
-
|
| 449 |
-
# Convert PIL to OpenCV BGR
|
| 450 |
image_cv = cv2.cvtColor(np.array(image_pil.convert("RGB")), cv2.COLOR_RGB2BGR)
|
| 451 |
|
| 452 |
-
# --- Detection
|
| 453 |
det_model = self.models_cache.get("det")
|
| 454 |
if det_model is None:
|
| 455 |
raise RuntimeError("YOLO model not loaded")
|
| 456 |
-
|
| 457 |
results = det_model.predict(image_cv, verbose=False, device="cpu")
|
| 458 |
if not results or not getattr(results[0], "boxes", None) or len(results[0].boxes) == 0:
|
| 459 |
-
import gradio as gr
|
| 460 |
raise gr.Error("No wound could be detected.")
|
| 461 |
|
| 462 |
box = results[0].boxes[0].xyxy[0].cpu().numpy().astype(int)
|
|
@@ -468,36 +460,21 @@ class AIProcessor:
|
|
| 468 |
import gradio as gr
|
| 469 |
raise gr.Error("Detected ROI is empty.")
|
| 470 |
|
| 471 |
-
# --- Segmentation (
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
pred = seg_model.predict(np.expand_dims(resized / 255.0, 0), verbose=0)
|
| 479 |
-
prob = _to_prob(pred) # (H,W) in [0,1]
|
| 480 |
-
binmask = _adaptive_threshold(prob, hard=0.5)
|
| 481 |
-
# gentle cleanup + largest component
|
| 482 |
-
binmask = cv2.morphologyEx(binmask, cv2.MORPH_OPEN, np.ones((3,3), np.uint8), iterations=1)
|
| 483 |
-
binmask = cv2.morphologyEx(binmask, cv2.MORPH_CLOSE, np.ones((3,3), np.uint8), iterations=1)
|
| 484 |
-
binmask = largest_component_mask(binmask, min_area_px=30)
|
| 485 |
-
# back to ROI size {0,1}
|
| 486 |
-
mask_roi_01 = cv2.resize(binmask, (roi.shape[1], roi.shape[0]), interpolation=cv2.INTER_NEAREST).astype(np.uint8)
|
| 487 |
-
logging.info(f"seg prob stats: min={prob.min():.4f}, max={prob.max():.4f}, mean={prob.mean():.4f}; on={(mask_roi_01==1).sum()}")
|
| 488 |
-
except Exception as e:
|
| 489 |
-
logging.warning(f"Segmentation failed: {e}")
|
| 490 |
-
mask_roi_01 = None
|
| 491 |
-
else:
|
| 492 |
-
logging.info("Skipping segmentation (no model).")
|
| 493 |
|
| 494 |
# --- Measurement ---
|
| 495 |
-
if
|
| 496 |
-
length_cm, breadth_cm, (box_pts, _) = measure_min_area_rect(
|
| 497 |
-
surface_area_cm2 = count_area_cm2(
|
| 498 |
-
anno_roi = draw_measurement_overlay(roi,
|
| 499 |
else:
|
| 500 |
-
# fallback to detection
|
| 501 |
h_px = max(0, y2 - y1); w_px = max(0, x2 - x1)
|
| 502 |
length_cm = round(h_px / px_per_cm, 2)
|
| 503 |
breadth_cm = round(w_px / px_per_cm, 2)
|
|
@@ -518,18 +495,14 @@ class AIProcessor:
|
|
| 518 |
|
| 519 |
segmentation_path = None
|
| 520 |
annotated_seg_path = None
|
| 521 |
-
if
|
| 522 |
-
# safe masked blend (no mask kwarg to addWeighted)
|
| 523 |
seg_full = image_cv.copy()
|
| 524 |
-
|
| 525 |
-
red = np.zeros_like(
|
| 526 |
-
blended = cv2.addWeighted(
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
roi_bg = cv2.bitwise_and(roi_overlay, cv2.bitwise_not(mask3))
|
| 531 |
-
roi_overlay = cv2.add(roi_bg, blended_masked)
|
| 532 |
-
|
| 533 |
seg_full[y1:y2, x1:x2] = roi_overlay
|
| 534 |
segmentation_path = os.path.join(out_dir, f"segmentation_{ts}.png")
|
| 535 |
cv2.imwrite(segmentation_path, seg_full)
|
|
@@ -568,7 +541,7 @@ class AIProcessor:
|
|
| 568 |
logging.error(f"Visual analysis failed: {e}", exc_info=True)
|
| 569 |
raise
|
| 570 |
|
| 571 |
-
# ---------- Knowledge base
|
| 572 |
def query_guidelines(self, query: str) -> str:
|
| 573 |
try:
|
| 574 |
vs = self.knowledge_base_cache.get("vector_store")
|
|
|
|
| 1 |
# smartheal_ai_processor.py
|
| 2 |
+
# Preserves ALL original class/function names.
|
| 3 |
+
# Changes:
|
| 4 |
+
# - Adds segment_wound(image) with your logic (+ KMeans fallback)
|
| 5 |
+
# - perform_visual_analysis() now calls segment_wound() for mask
|
| 6 |
+
# - Safe overlay (no mask kwarg in addWeighted)
|
| 7 |
+
# - Conditional @spaces.GPU to avoid cudaGetDeviceCount crash
|
| 8 |
|
| 9 |
import os
|
| 10 |
import time
|
|
|
|
| 12 |
from datetime import datetime
|
| 13 |
from typing import Optional, Dict, List, Tuple
|
| 14 |
|
| 15 |
+
# Quiet HF tokenizers fork warning
|
| 16 |
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
|
| 17 |
|
| 18 |
import cv2
|
| 19 |
import numpy as np
|
| 20 |
+
from PIL import Image
|
| 21 |
from PIL.ExifTags import TAGS
|
| 22 |
|
| 23 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
|
|
|
| 30 |
SEG_MODEL_PATH = "src/segmentation_model.h5" # optional
|
| 31 |
GUIDELINE_PDFS = ["src/eHealth in Wound Care.pdf", "src/IWGDF Guideline.pdf", "src/evaluation.pdf"]
|
| 32 |
DATASET_ID = "SmartHeal/wound-image-uploads"
|
| 33 |
+
DEFAULT_PX_PER_CM = 38.0
|
| 34 |
+
PX_PER_CM_MIN, PX_PER_CM_MAX = 5.0, 1200.0
|
| 35 |
|
| 36 |
models_cache: Dict[str, object] = {}
|
| 37 |
knowledge_base_cache: Dict[str, object] = {}
|
|
|
|
| 43 |
|
| 44 |
def _import_tf_loader():
|
| 45 |
import tensorflow as tf
|
| 46 |
+
tf.config.set_visible_devices([], "GPU") # force TF CPU
|
| 47 |
from tensorflow.keras.models import load_model
|
| 48 |
return load_model
|
| 49 |
|
|
|
|
| 67 |
from huggingface_hub import HfApi, HfFolder
|
| 68 |
return HfApi, HfFolder
|
| 69 |
|
| 70 |
+
# ---------- Conditional Spaces GPU wrapper ----------
|
|
|
|
| 71 |
def _cuda_available() -> bool:
|
| 72 |
try:
|
| 73 |
import torch
|
|
|
|
| 84 |
) -> str:
|
| 85 |
try:
|
| 86 |
from transformers import pipeline
|
|
|
|
| 87 |
pipe = pipeline(
|
| 88 |
"image-text-to-text",
|
| 89 |
model="google/medgemma-4b-it",
|
|
|
|
| 125 |
logging.error(f"❌ MedGemma generation error: {e}")
|
| 126 |
return "⚠️ GPU/LLM worker unavailable"
|
| 127 |
|
|
|
|
|
|
|
| 128 |
try:
|
| 129 |
import spaces
|
| 130 |
if _cuda_available():
|
|
|
|
| 145 |
image_pil: Image.Image,
|
| 146 |
max_new_tokens: Optional[int] = None,
|
| 147 |
) -> str:
|
|
|
|
| 148 |
return _generate_medgemma_report_core(patient_info, visual_results, guideline_context, image_pil, max_new_tokens)
|
| 149 |
except Exception:
|
| 150 |
def generate_medgemma_report(
|
|
|
|
| 288 |
f35 = _to_float(exif.get("FocalLengthIn35mmFilm") or exif.get("FocalLengthIn35mm"))
|
| 289 |
subj_dist_m = _to_float(exif.get("SubjectDistance"))
|
| 290 |
sensor_w_mm = _estimate_sensor_width_mm(f_mm, f35)
|
|
|
|
| 291 |
meta.update({"f_mm": f_mm, "f35": f35, "sensor_w_mm": sensor_w_mm, "distance_m": subj_dist_m})
|
| 292 |
|
| 293 |
if f_mm and sensor_w_mm and subj_dist_m and subj_dist_m > 0:
|
|
|
|
| 302 |
except Exception:
|
| 303 |
return float(default_px_per_cm), meta
|
| 304 |
|
| 305 |
+
# ---------- Your requested segmentation logic ----------
|
| 306 |
+
def segment_wound(image: np.ndarray) -> np.ndarray:
|
| 307 |
+
"""
|
| 308 |
+
Segments wound from a preprocessed ROI image, with a fallback to KMeans if the model fails.
|
| 309 |
+
Returns a mask in 0..255 (uint8), same HxW as input image.
|
| 310 |
+
"""
|
| 311 |
+
segmentation_model = models_cache.get("seg", None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 312 |
|
| 313 |
+
if segmentation_model is not None:
|
| 314 |
+
try:
|
| 315 |
+
input_size = getattr(segmentation_model, "input_shape", None)
|
| 316 |
+
if input_size is None or len(input_size) < 3:
|
| 317 |
+
raise ValueError(f"Bad seg input_shape: {input_size}")
|
| 318 |
+
H, W = int(input_size[1]), int(input_size[2]) # (None,H,W,C)
|
| 319 |
+
|
| 320 |
+
resized = cv2.resize(image, (W, H)) # cv2 takes (W,H)
|
| 321 |
+
norm = np.expand_dims(resized / 255.0, axis=0) # (1,H,W,3)
|
| 322 |
+
prediction = segmentation_model.predict(norm, verbose=0)
|
| 323 |
+
|
| 324 |
+
# Handle models with multiple outputs
|
| 325 |
+
if isinstance(prediction, list):
|
| 326 |
+
prediction = prediction[0]
|
| 327 |
+
# squeeze batch dim if present
|
| 328 |
+
prediction = prediction[0] if prediction.ndim >= 3 else prediction
|
| 329 |
+
|
| 330 |
+
# prediction can be (H,W,1) or (H,W)
|
| 331 |
+
pred2d = prediction.squeeze()
|
| 332 |
+
mask_prob = cv2.resize(pred2d, (image.shape[1], image.shape[0])) # back to ROI size
|
| 333 |
+
mask = (mask_prob >= 0.5).astype(np.uint8) * 255
|
| 334 |
+
if mask.max() == 0:
|
| 335 |
+
logging.info("Seg model returned empty mask at 0.5 — keeping as-is (KMeans fallback will handle if needed).")
|
| 336 |
+
return mask.astype(np.uint8)
|
| 337 |
+
except Exception as e:
|
| 338 |
+
logging.warning(f"⚠️ Segmentation model prediction failed: {e}. Falling back to KMeans.")
|
| 339 |
+
|
| 340 |
+
# --- Fallback: color clustering (KMeans, k=2) ---
|
| 341 |
+
Z = image.reshape((-1, 3)).astype(np.float32)
|
| 342 |
+
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
|
| 343 |
+
_K = 2
|
| 344 |
+
_, labels, centers = cv2.kmeans(Z, _K, None, criteria, 5, cv2.KMEANS_PP_CENTERS)
|
| 345 |
+
centers = centers.astype(np.uint8).reshape(1, _K, 3)
|
| 346 |
+
centers_lab = cv2.cvtColor(centers, cv2.COLOR_BGR2LAB)[0]
|
| 347 |
+
wound_idx = int(np.argmax(centers_lab[:, 1])) # reddest cluster (a* channel)
|
| 348 |
+
mask = (labels.reshape(image.shape[:2]) == wound_idx).astype(np.uint8) * 255
|
| 349 |
+
return mask.astype(np.uint8)
|
| 350 |
+
|
| 351 |
+
# ---------- Measurement + overlay helpers ----------
|
| 352 |
+
def largest_component_mask(binary01: np.ndarray, min_area_px: int = 50) -> np.ndarray:
|
| 353 |
+
num, labels, stats, _ = cv2.connectedComponentsWithStats(binary01.astype(np.uint8), connectivity=8)
|
| 354 |
if num <= 1:
|
| 355 |
+
return binary01.astype(np.uint8)
|
| 356 |
areas = stats[1:, cv2.CC_STAT_AREA]
|
| 357 |
if areas.size == 0 or areas.max() < min_area_px:
|
| 358 |
+
return binary01.astype(np.uint8)
|
| 359 |
largest_idx = 1 + int(np.argmax(areas))
|
| 360 |
return (labels == largest_idx).astype(np.uint8)
|
| 361 |
|
| 362 |
+
def measure_min_area_rect(mask01: np.ndarray, px_per_cm: float) -> Tuple[float, float, Tuple]:
|
| 363 |
+
contours, _ = cv2.findContours(mask01.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 364 |
if not contours:
|
| 365 |
return 0.0, 0.0, (None, None)
|
| 366 |
cnt = max(contours, key=cv2.contourArea)
|
|
|
|
| 372 |
box = cv2.boxPoints(rect).astype(int)
|
| 373 |
return length_cm, breadth_cm, (box, rect[0])
|
| 374 |
|
| 375 |
+
def count_area_cm2(mask01: np.ndarray, px_per_cm: float) -> float:
|
| 376 |
+
px_count = float(mask01.astype(bool).sum())
|
| 377 |
return round(px_count / (max(px_per_cm, 1e-6) ** 2), 2)
|
| 378 |
|
| 379 |
def draw_measurement_overlay(
|
|
|
|
| 385 |
thickness: int = 2
|
| 386 |
) -> np.ndarray:
|
| 387 |
overlay = base_bgr.copy()
|
| 388 |
+
red = np.zeros_like(overlay); red[:] = (0, 0, 255)
|
| 389 |
+
blended = cv2.addWeighted(overlay, 1.0, red, 0.3, 0)
|
|
|
|
| 390 |
m3 = np.dstack([mask01 * 255] * 3).astype("uint8")
|
| 391 |
+
overlay = cv2.add(cv2.bitwise_and(overlay, cv2.bitwise_not(m3)),
|
| 392 |
+
cv2.bitwise_and(blended, m3))
|
|
|
|
| 393 |
|
| 394 |
if rect_box is not None:
|
| 395 |
cv2.polylines(overlay, [rect_box], True, (255, 255, 255), thickness)
|
|
|
|
| 407 |
cv2.arrowedLine(img, p1, p2, (255, 255, 255), thickness, tipLength=0.05)
|
| 408 |
cv2.arrowedLine(img, p2, p1, (255, 255, 255), thickness, tipLength=0.05)
|
| 409 |
|
|
|
|
|
|
|
|
|
|
| 410 |
def put_label(text, org):
|
| 411 |
cv2.putText(overlay, text, (org[0] + 4, org[1] - 4),
|
| 412 |
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 4, cv2.LINE_AA)
|
| 413 |
cv2.putText(overlay, text, (org[0] + 4, org[1] - 4),
|
| 414 |
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA)
|
| 415 |
|
| 416 |
+
draw_arrow(overlay, mids[long_pair[0]], mids[long_pair[1]])
|
| 417 |
+
draw_arrow(overlay, mids[short_pair[0]], mids[short_pair[1]])
|
| 418 |
put_label(f"{length_cm:.2f} cm", mids[long_pair[0]])
|
| 419 |
put_label(f"{breadth_cm:.2f} cm", mids[short_pair[0]])
|
| 420 |
return overlay
|
|
|
|
| 435 |
|
| 436 |
def perform_visual_analysis(self, image_pil: Image.Image) -> Dict:
|
| 437 |
"""
|
| 438 |
+
YOLO detect → crop ROI → segment_wound(ROI) → largest component →
|
| 439 |
+
minAreaRect measurement (cm) using EXIF px/cm → save outputs.
|
| 440 |
"""
|
| 441 |
try:
|
|
|
|
| 442 |
px_per_cm, exif_meta = estimate_px_per_cm_from_exif(image_pil, DEFAULT_PX_PER_CM)
|
|
|
|
|
|
|
| 443 |
image_cv = cv2.cvtColor(np.array(image_pil.convert("RGB")), cv2.COLOR_RGB2BGR)
|
| 444 |
|
| 445 |
+
# --- Detection ---
|
| 446 |
det_model = self.models_cache.get("det")
|
| 447 |
if det_model is None:
|
| 448 |
raise RuntimeError("YOLO model not loaded")
|
|
|
|
| 449 |
results = det_model.predict(image_cv, verbose=False, device="cpu")
|
| 450 |
if not results or not getattr(results[0], "boxes", None) or len(results[0].boxes) == 0:
|
| 451 |
+
import gradio as gr
|
| 452 |
raise gr.Error("No wound could be detected.")
|
| 453 |
|
| 454 |
box = results[0].boxes[0].xyxy[0].cpu().numpy().astype(int)
|
|
|
|
| 460 |
import gradio as gr
|
| 461 |
raise gr.Error("Detected ROI is empty.")
|
| 462 |
|
| 463 |
+
# --- Segmentation (your logic + fallback) ---
|
| 464 |
+
mask_u8_255 = segment_wound(roi) # 0..255
|
| 465 |
+
# Clean up & keep largest component (in 0/1)
|
| 466 |
+
mask01 = (mask_u8_255 > 127).astype(np.uint8)
|
| 467 |
+
mask01 = cv2.morphologyEx(mask01, cv2.MORPH_OPEN, np.ones((3,3), np.uint8), iterations=1)
|
| 468 |
+
mask01 = cv2.morphologyEx(mask01, cv2.MORPH_CLOSE, np.ones((3,3), np.uint8), iterations=1)
|
| 469 |
+
mask01 = largest_component_mask(mask01, min_area_px=30)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 470 |
|
| 471 |
# --- Measurement ---
|
| 472 |
+
if mask01.any():
|
| 473 |
+
length_cm, breadth_cm, (box_pts, _) = measure_min_area_rect(mask01, px_per_cm)
|
| 474 |
+
surface_area_cm2 = count_area_cm2(mask01, px_per_cm)
|
| 475 |
+
anno_roi = draw_measurement_overlay(roi, mask01, box_pts, length_cm, breadth_cm)
|
| 476 |
else:
|
| 477 |
+
# fallback to detection box
|
| 478 |
h_px = max(0, y2 - y1); w_px = max(0, x2 - x1)
|
| 479 |
length_cm = round(h_px / px_per_cm, 2)
|
| 480 |
breadth_cm = round(w_px / px_per_cm, 2)
|
|
|
|
| 495 |
|
| 496 |
segmentation_path = None
|
| 497 |
annotated_seg_path = None
|
| 498 |
+
if mask01.any():
|
|
|
|
| 499 |
seg_full = image_cv.copy()
|
| 500 |
+
# safe masked blend (no mask kwarg)
|
| 501 |
+
red = np.zeros_like(roi); red[:] = (0, 0, 255)
|
| 502 |
+
blended = cv2.addWeighted(roi, 1.0, red, 0.3, 0)
|
| 503 |
+
m3 = np.dstack([mask01 * 255] * 3).astype("uint8")
|
| 504 |
+
roi_overlay = cv2.add(cv2.bitwise_and(roi, cv2.bitwise_not(m3)),
|
| 505 |
+
cv2.bitwise_and(blended, m3))
|
|
|
|
|
|
|
|
|
|
| 506 |
seg_full[y1:y2, x1:x2] = roi_overlay
|
| 507 |
segmentation_path = os.path.join(out_dir, f"segmentation_{ts}.png")
|
| 508 |
cv2.imwrite(segmentation_path, seg_full)
|
|
|
|
| 541 |
logging.error(f"Visual analysis failed: {e}", exc_info=True)
|
| 542 |
raise
|
| 543 |
|
| 544 |
+
# ---------- Knowledge base + reporting (unchanged names) ----------
|
| 545 |
def query_guidelines(self, query: str) -> str:
|
| 546 |
try:
|
| 547 |
vs = self.knowledge_base_cache.get("vector_store")
|