File size: 6,621 Bytes
ecde958
d722140
 
ecde958
 
 
 
 
d722140
 
 
 
 
 
 
ecde958
 
d722140
ecde958
d722140
ecde958
b0dbe7f
ecde958
d722140
ecde958
d722140
 
 
 
 
ecde958
d722140
 
 
 
 
 
 
 
 
b0dbe7f
d722140
 
 
 
 
 
 
 
 
 
b0dbe7f
 
 
ecde958
 
d722140
ecde958
 
d722140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0dbe7f
d722140
 
 
 
 
b0dbe7f
 
 
 
 
 
 
 
 
 
 
d722140
 
 
 
 
 
 
 
 
 
b0dbe7f
d722140
b0dbe7f
 
 
 
 
d722140
b0dbe7f
 
 
 
d722140
b0dbe7f
 
 
 
d722140
b0dbe7f
d722140
b0dbe7f
d722140
 
 
b0dbe7f
d722140
 
 
 
 
 
b0dbe7f
 
 
 
 
 
 
d722140
 
 
 
 
 
 
 
 
 
 
b0dbe7f
d722140
ecde958
d722140
ecde958
b0dbe7f
 
d722140
 
b0dbe7f
ecde958
d722140
ecde958
d722140
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
---
title: VoiceAPI
emoji: 🎙️
colorFrom: blue
colorTo: purple
sdk: docker
app_port: 7860
license: mit
tags:
  - tts
  - text-to-speech
  - indian-languages
  - vits
  - multilingual
  - speech-synthesis
---

# 🎙️ VoiceAPI - Multi-lingual Indian Language TTS

An advanced **multi-speaker, multilingual text-to-speech (TTS) synthesizer** supporting 11 Indian languages with 21 voice options.

**Live API**: [https://huggingface.co/proxy/harshil748-voiceapi.hf.space](https://huggingface.co/proxy/harshil748-voiceapi.hf.space)

## 🌟 Features

- **11 Indian Languages**: Hindi, Bengali, Marathi, Telugu, Kannada, Gujarati, Bhojpuri, Chhattisgarhi, Maithili, Magahi, English
- **21 Voice Options**: Male and female voices for each language
- **High-Quality Audio**: 22050 Hz sample rate, natural prosody
- **REST API**: Simple GET/POST endpoints for easy integration
- **Real-time Synthesis**: Fast inference on CPU/GPU

## 🗣️ Supported Languages

| Language | Code | Female | Male | Script |
|----------|------|--------|------|--------|
| Hindi | hi | ✅ | ✅ | देवनागरी |
| Bengali | bn | ✅ | ✅ | বাংলা |
| Marathi | mr | ✅ | ✅ | देवनागरी |
| Telugu | te | ✅ | ✅ | తెలుగు |
| Kannada | kn | ✅ | ✅ | ಕನ್ನಡ |
| Gujarati | gu | ✅ | - | ગુજરાતી |
| Bhojpuri | bho | ✅ | ✅ | देवनागरी |
| Chhattisgarhi | hne | ✅ | ✅ | देवनागरी |
| Maithili | mai | ✅ | ✅ | देवनागरी |
| Magahi | mag | ✅ | ✅ | देवनागरी |
| English | en | ✅ | ✅ | Latin |

## 📡 API Usage

### Endpoint

\`\`\`
GET/POST /Get_Inference
\`\`\`

### Parameters

| Parameter | Type | Required | Description |
|-----------|------|----------|-------------|
| \`text\` | string | Yes | Text to synthesize (lowercase for English) |
| \`lang\` | string | Yes | Language name (hindi, bengali, etc.) |
| \`speaker_wav\` | file | Yes | Reference WAV file (for API compatibility) |

### Example (Python)

\`\`\`python
import requests

base_url = 'https://huggingface.co/proxy/harshil748-voiceapi.hf.space/Get_Inference'
WavPath = 'reference.wav'

params = {
    'text': 'नमस्ते, आप कैसे हैं?',
    'lang': 'hindi',
}

with open(WavPath, "rb") as AudioFile:
    response = requests.get(base_url, params=params, files={'speaker_wav': AudioFile.read()})

if response.status_code == 200:
    with open('output.wav', 'wb') as f:
        f.write(response.content)
    print("Audio saved as 'output.wav'")
\`\`\`

### Example (cURL)

\`\`\`bash
curl -X POST "https://huggingface.co/proxy/harshil748-voiceapi.hf.space/Get_Inference?text=hello&lang=english" \\
  -F "speaker[email protected]" \\
  -o output.wav
\`\`\`

## 🏗️ Model Architecture

- **Base Model**: VITS (Variational Inference with adversarial learning for Text-to-Speech)
- **Encoder**: Transformer-based text encoder (6 layers, 192 hidden channels)
- **Decoder**: HiFi-GAN neural vocoder
- **Duration Predictor**: Stochastic duration predictor for natural prosody
- **Sample Rate**: 22050 Hz (16000 Hz for Gujarati)

## 📊 Training

### Datasets Used

| Dataset | Languages | Hours | Source | License |
|---------|-----------|-------|--------|---------|
| OpenSLR-103 | Hindi | 24h | [OpenSLR](https://www.openslr.org/103/) | CC BY 4.0 |
| OpenSLR-37 | Bengali | 22h | [OpenSLR](https://www.openslr.org/37/) | CC BY 4.0 |
| OpenSLR-64 | Marathi | 30h | [OpenSLR](https://www.openslr.org/64/) | CC BY 4.0 |
| OpenSLR-66 | Telugu | 28h | [OpenSLR](https://www.openslr.org/66/) | CC BY 4.0 |
| OpenSLR-79 | Kannada | 26h | [OpenSLR](https://www.openslr.org/79/) | CC BY 4.0 |
| OpenSLR-78 | Gujarati | 25h | [OpenSLR](https://www.openslr.org/78/) | CC BY 4.0 |
| Common Voice | Hindi, Bengali | 50h+ | [Mozilla](https://commonvoice.mozilla.org/) | CC0 |
| IndicTTS | Multiple | 100h+ | [IIT Madras](https://www.iitm.ac.in/donlab/tts/) | Research |
| Indic-Voices | Multiple | 200h+ | [AI4Bharat](https://ai4bharat.iitm.ac.in/indic-voices/) | CC BY 4.0 |

### Training Configuration

- **Epochs**: 1000
- **Batch Size**: 32
- **Learning Rate**: 2e-4
- **Optimizer**: AdamW
- **FP16 Training**: Enabled
- **Hardware**: NVIDIA V100/A100 GPUs

### Training Pipeline

1. **Data Preparation** (\`training/prepare_dataset.py\`)
   - Download audio datasets
   - Normalize audio to 22050 Hz
   - Generate text transcriptions
   - Create train/val splits

2. **Model Training** (\`training/train_vits.py\`)
   - Train VITS model with character-level tokenization
   - Multi-speaker training with speaker embeddings
   - Mixed precision training for efficiency

3. **Model Export** (\`training/export_model.py\`)
   - Export trained models to JIT format
   - Generate vocabulary files (chars.txt)
   - Package for inference

See \`training/\` directory for full training scripts and configurations.

## �� Project Structure

\`\`\`
VoiceAPI/
├── app.py                 # Application entry point
├── Dockerfile             # Docker configuration
├── requirements.txt       # Python dependencies
├── src/
│   ├── api.py             # FastAPI REST server
│   ├── engine.py          # TTS inference engine
│   ├── config.py          # Voice configurations
│   ├── tokenizer.py       # Text tokenization
│   └── model_loader.py    # Model loading utilities
├── models/                # Trained model checkpoints
│   ├── hi_male/           # Hindi male voice
│   ├── hi_female/         # Hindi female voice
│   ├── bn_male/           # Bengali male voice
│   └── ...                # Other voices
└── training/
    ├── train_vits.py      # VITS training script
    ├── prepare_dataset.py # Data preparation
    ├── export_model.py    # Model export
    ├── datasets.csv       # Dataset links
    └── configs/           # Training configs
\`\`\`

## 📜 License

- **Code**: MIT License
- **Models**: CC BY 4.0
- **Datasets**: Individual licenses (see training/datasets.csv)

## 🙏 Acknowledgments

- [SYSPIN IISc SPIRE Lab](https://syspin.iisc.ac.in/) for Indian language speech research
- [Facebook MMS](https://github.com/facebookresearch/fairseq/tree/main/examples/mms) for multilingual TTS
- [Coqui TTS](https://github.com/coqui-ai/TTS) for the TTS library
- [AI4Bharat](https://ai4bharat.iitm.ac.in/) for Indian language resources
- [OpenSLR](https://www.openslr.org/) for speech datasets

## 📧 Contact

Built for the **Voice Tech for All** Hackathon - Multi-lingual TTS for healthcare assistants serving low-income communities.