Spaces:
Running
Running
Commit
·
d722140
1
Parent(s):
989343f
Add training scripts and comprehensive documentation
Browse files- Added VITS training pipeline (train_vits.py)
- Added dataset preparation script (prepare_dataset.py)
- Added model export utility (export_model.py)
- Added training configs for Hindi and Bengali
- Added datasets.csv with links to OpenSLR, CommonVoice, IndicTTS
- Updated README with full documentation, API usage, and architecture details
- README.md +157 -18
- training/configs/bengali_female.yaml +59 -0
- training/configs/hindi_female.yaml +60 -0
- training/datasets.csv +14 -0
- training/export_model.py +83 -0
- training/prepare_dataset.py +367 -0
- training/train_vits.py +306 -0
README.md
CHANGED
|
@@ -1,39 +1,178 @@
|
|
| 1 |
---
|
| 2 |
-
title: VoiceAPI
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: purple
|
| 6 |
sdk: docker
|
| 7 |
app_port: 7860
|
| 8 |
-
pinned: true
|
| 9 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
# VoiceAPI - Multi-lingual
|
| 13 |
|
| 14 |
-
|
| 15 |
|
| 16 |
-
|
| 17 |
|
| 18 |
-
|
| 19 |
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
### Parameters
|
|
|
|
| 27 |
| Parameter | Type | Required | Description |
|
| 28 |
|-----------|------|----------|-------------|
|
| 29 |
-
| text | string | Yes | Text to synthesize |
|
| 30 |
-
| lang | string | Yes | hindi, bengali,
|
| 31 |
-
| speaker_wav | file | Yes | Reference WAV file |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
##
|
| 34 |
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
##
|
| 38 |
|
| 39 |
-
|
|
|
|
| 1 |
---
|
| 2 |
+
title: VoiceAPI
|
| 3 |
+
emoji: 🎙️
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: purple
|
| 6 |
sdk: docker
|
| 7 |
app_port: 7860
|
|
|
|
| 8 |
license: mit
|
| 9 |
+
tags:
|
| 10 |
+
- tts
|
| 11 |
+
- text-to-speech
|
| 12 |
+
- indian-languages
|
| 13 |
+
- vits
|
| 14 |
+
- multilingual
|
| 15 |
+
- speech-synthesis
|
| 16 |
---
|
| 17 |
|
| 18 |
+
# 🎙️ VoiceAPI - Multi-lingual Indian Language TTS
|
| 19 |
|
| 20 |
+
An advanced **multi-speaker, multilingual text-to-speech (TTS) synthesizer** supporting 11 Indian languages with 21 voice options.
|
| 21 |
|
| 22 |
+
**Live API**: [https://harshil748-voiceapi.hf.space](https://harshil748-voiceapi.hf.space)
|
| 23 |
|
| 24 |
+
## 🌟 Features
|
| 25 |
|
| 26 |
+
- **11 Indian Languages**: Hindi, Bengali, Marathi, Telugu, Kannada, Gujarati, Bhojpuri, Chhattisgarhi, Maithili, Magahi, English
|
| 27 |
+
- **21 Voice Options**: Male and female voices for each language
|
| 28 |
+
- **High-Quality Audio**: 22050 Hz sample rate, natural prosody
|
| 29 |
+
- **REST API**: Simple GET/POST endpoints for easy integration
|
| 30 |
+
- **Real-time Synthesis**: Fast inference on CPU/GPU
|
| 31 |
|
| 32 |
+
## 🗣️ Supported Languages
|
| 33 |
+
|
| 34 |
+
| Language | Code | Female | Male | Script |
|
| 35 |
+
|----------|------|--------|------|--------|
|
| 36 |
+
| Hindi | hi | ✅ | ✅ | देवनागरी |
|
| 37 |
+
| Bengali | bn | ✅ | ✅ | বাংলা |
|
| 38 |
+
| Marathi | mr | ✅ | ✅ | देवनागरी |
|
| 39 |
+
| Telugu | te | ✅ | ✅ | తెలుగు |
|
| 40 |
+
| Kannada | kn | ✅ | ✅ | ಕನ್ನಡ |
|
| 41 |
+
| Gujarati | gu | ✅ (MMS) | - | ગુજરાતી |
|
| 42 |
+
| Bhojpuri | bho | ✅ | ✅ | देवनागरी |
|
| 43 |
+
| Chhattisgarhi | hne | ✅ | ✅ | देवनागरी |
|
| 44 |
+
| Maithili | mai | ✅ | ✅ | देवनागरी |
|
| 45 |
+
| Magahi | mag | ✅ | ✅ | देवनागरी |
|
| 46 |
+
| English | en | ✅ | ✅ | Latin |
|
| 47 |
+
|
| 48 |
+
## 📡 API Usage
|
| 49 |
+
|
| 50 |
+
### Endpoint
|
| 51 |
+
|
| 52 |
+
\`\`\`
|
| 53 |
+
GET/POST /Get_Inference
|
| 54 |
+
\`\`\`
|
| 55 |
|
| 56 |
### Parameters
|
| 57 |
+
|
| 58 |
| Parameter | Type | Required | Description |
|
| 59 |
|-----------|------|----------|-------------|
|
| 60 |
+
| \`text\` | string | Yes | Text to synthesize (lowercase for English) |
|
| 61 |
+
| \`lang\` | string | Yes | Language name (hindi, bengali, etc.) |
|
| 62 |
+
| \`speaker_wav\` | file | Yes | Reference WAV file (for API compatibility) |
|
| 63 |
+
|
| 64 |
+
### Example (Python)
|
| 65 |
+
|
| 66 |
+
\`\`\`python
|
| 67 |
+
import requests
|
| 68 |
+
|
| 69 |
+
base_url = 'https://harshil748-voiceapi.hf.space/Get_Inference'
|
| 70 |
+
WavPath = 'reference.wav'
|
| 71 |
+
|
| 72 |
+
params = {
|
| 73 |
+
'text': 'नमस्ते, आप कैसे हैं?',
|
| 74 |
+
'lang': 'hindi',
|
| 75 |
+
}
|
| 76 |
+
|
| 77 |
+
with open(WavPath, "rb") as AudioFile:
|
| 78 |
+
response = requests.get(base_url, params=params, files={'speaker_wav': AudioFile.read()})
|
| 79 |
+
|
| 80 |
+
if response.status_code == 200:
|
| 81 |
+
with open('output.wav', 'wb') as f:
|
| 82 |
+
f.write(response.content)
|
| 83 |
+
print("Audio saved as 'output.wav'")
|
| 84 |
+
\`\`\`
|
| 85 |
+
|
| 86 |
+
### Example (cURL)
|
| 87 |
+
|
| 88 |
+
\`\`\`bash
|
| 89 |
+
curl -X POST "https://harshil748-voiceapi.hf.space/Get_Inference?text=hello&lang=english" \\
|
| 90 |
+
-F "[email protected]" \\
|
| 91 |
+
-o output.wav
|
| 92 |
+
\`\`\`
|
| 93 |
+
|
| 94 |
+
## 🏗️ Model Architecture
|
| 95 |
+
|
| 96 |
+
- **Base Model**: VITS (Variational Inference with adversarial learning for Text-to-Speech)
|
| 97 |
+
- **Encoder**: Transformer-based text encoder (6 layers, 192 hidden channels)
|
| 98 |
+
- **Decoder**: HiFi-GAN neural vocoder
|
| 99 |
+
- **Duration Predictor**: Stochastic duration predictor for natural prosody
|
| 100 |
+
- **Sample Rate**: 22050 Hz (16000 Hz for Gujarati MMS)
|
| 101 |
+
|
| 102 |
+
## 📊 Training
|
| 103 |
+
|
| 104 |
+
### Datasets Used
|
| 105 |
+
|
| 106 |
+
| Dataset | Languages | Source | License |
|
| 107 |
+
|---------|-----------|--------|---------|
|
| 108 |
+
| OpenSLR-103 | Hindi | [OpenSLR](https://www.openslr.org/103/) | CC BY 4.0 |
|
| 109 |
+
| OpenSLR-37 | Bengali | [OpenSLR](https://www.openslr.org/37/) | CC BY 4.0 |
|
| 110 |
+
| OpenSLR-64 | Marathi | [OpenSLR](https://www.openslr.org/64/) | CC BY 4.0 |
|
| 111 |
+
| OpenSLR-66 | Telugu | [OpenSLR](https://www.openslr.org/66/) | CC BY 4.0 |
|
| 112 |
+
| OpenSLR-79 | Kannada | [OpenSLR](https://www.openslr.org/79/) | CC BY 4.0 |
|
| 113 |
+
| OpenSLR-78 | Gujarati | [OpenSLR](https://www.openslr.org/78/) | CC BY 4.0 |
|
| 114 |
+
| Common Voice | Hindi, Bengali | [Mozilla](https://commonvoice.mozilla.org/) | CC0 |
|
| 115 |
+
| IndicTTS | Multiple | [IIT Madras](https://www.iitm.ac.in/donlab/tts/) | Research |
|
| 116 |
+
| Indic-Voices | Multiple | [AI4Bharat](https://ai4bharat.iitm.ac.in/indic-voices/) | CC BY 4.0 |
|
| 117 |
+
|
| 118 |
+
### Training Configuration
|
| 119 |
+
|
| 120 |
+
- **Epochs**: 1000
|
| 121 |
+
- **Batch Size**: 32
|
| 122 |
+
- **Learning Rate**: 2e-4
|
| 123 |
+
- **Optimizer**: AdamW
|
| 124 |
+
- **FP16 Training**: Enabled
|
| 125 |
+
- **Hardware**: NVIDIA V100/A100 GPUs
|
| 126 |
+
|
| 127 |
+
See \`training/\` directory for full training scripts and configurations.
|
| 128 |
+
|
| 129 |
+
## 🚀 Deployment
|
| 130 |
+
|
| 131 |
+
This API is deployed on HuggingFace Spaces using Docker:
|
| 132 |
+
|
| 133 |
+
\`\`\`dockerfile
|
| 134 |
+
FROM python:3.10-slim
|
| 135 |
+
# ... installs dependencies
|
| 136 |
+
# Downloads models from Harshil748/VoiceAPI-Models
|
| 137 |
+
# Runs FastAPI server on port 7860
|
| 138 |
+
\`\`\`
|
| 139 |
+
|
| 140 |
+
Models are hosted separately at [Harshil748/VoiceAPI-Models](https://huggingface.co/Harshil748/VoiceAPI-Models) (~8GB).
|
| 141 |
+
|
| 142 |
+
## 📁 Project Structure
|
| 143 |
+
|
| 144 |
+
\`\`\`
|
| 145 |
+
VoiceAPI/
|
| 146 |
+
├── app.py # HuggingFace Spaces entry point
|
| 147 |
+
├── Dockerfile # Docker configuration
|
| 148 |
+
├── requirements.txt # Python dependencies
|
| 149 |
+
├── download_models.py # Model downloader
|
| 150 |
+
├── src/
|
| 151 |
+
│ ├── api.py # FastAPI REST server
|
| 152 |
+
│ ├── engine.py # TTS inference engine
|
| 153 |
+
│ ├── config.py # Voice configurations
|
| 154 |
+
│ └── tokenizer.py # Text tokenization
|
| 155 |
+
└── training/
|
| 156 |
+
├── train_vits.py # VITS training script
|
| 157 |
+
├── prepare_dataset.py # Data preparation
|
| 158 |
+
├── export_model.py # Model export
|
| 159 |
+
├── datasets.csv # Dataset links
|
| 160 |
+
└── configs/ # Training configs
|
| 161 |
+
\`\`\`
|
| 162 |
+
|
| 163 |
+
## 📜 License
|
| 164 |
+
|
| 165 |
+
- **Code**: MIT License
|
| 166 |
+
- **Models**: CC BY 4.0 (following SYSPIN licensing)
|
| 167 |
+
- **Datasets**: Individual licenses (see training/datasets.csv)
|
| 168 |
|
| 169 |
+
## 🙏 Acknowledgments
|
| 170 |
|
| 171 |
+
- [SYSPIN IISc SPIRE Lab](https://syspin.iisc.ac.in/) for pre-trained VITS models
|
| 172 |
+
- [Facebook MMS](https://github.com/facebookresearch/fairseq/tree/main/examples/mms) for Gujarati TTS
|
| 173 |
+
- [Coqui TTS](https://github.com/coqui-ai/TTS) for the TTS library
|
| 174 |
+
- [AI4Bharat](https://ai4bharat.iitm.ac.in/) for Indian language resources
|
| 175 |
|
| 176 |
+
## 📧 Contact
|
| 177 |
|
| 178 |
+
Built for the **Voice Tech for All** Hackathon - Multi-lingual TTS for healthcare assistants serving low-income communities.
|
training/configs/bengali_female.yaml
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Bengali Female VITS Training Configuration
|
| 2 |
+
# Dataset: OpenSLR Bengali + IndicTTS Bengali Female subset
|
| 3 |
+
|
| 4 |
+
model:
|
| 5 |
+
name: vits
|
| 6 |
+
hidden_channels: 192
|
| 7 |
+
filter_channels: 768
|
| 8 |
+
n_heads: 2
|
| 9 |
+
n_layers: 6
|
| 10 |
+
kernel_size: 3
|
| 11 |
+
p_dropout: 0.1
|
| 12 |
+
resblock: "1"
|
| 13 |
+
resblock_kernel_sizes: [3, 7, 11]
|
| 14 |
+
resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
| 15 |
+
upsample_rates: [8, 8, 2, 2]
|
| 16 |
+
upsample_initial_channel: 512
|
| 17 |
+
upsample_kernel_sizes: [16, 16, 4, 4]
|
| 18 |
+
n_speakers: 1
|
| 19 |
+
gin_channels: 256
|
| 20 |
+
|
| 21 |
+
audio:
|
| 22 |
+
sample_rate: 22050
|
| 23 |
+
filter_length: 1024
|
| 24 |
+
hop_length: 256
|
| 25 |
+
win_length: 1024
|
| 26 |
+
n_mel_channels: 80
|
| 27 |
+
mel_fmin: 0.0
|
| 28 |
+
mel_fmax: null
|
| 29 |
+
max_wav_value: 32768.0
|
| 30 |
+
|
| 31 |
+
data:
|
| 32 |
+
training_files: data/bengali_female/metadata_train.csv
|
| 33 |
+
validation_files: data/bengali_female/metadata_val.csv
|
| 34 |
+
text_cleaners: [bengali_cleaners]
|
| 35 |
+
segment_size: 8192
|
| 36 |
+
add_blank: true
|
| 37 |
+
|
| 38 |
+
training:
|
| 39 |
+
learning_rate: 2e-4
|
| 40 |
+
betas: [0.8, 0.99]
|
| 41 |
+
eps: 1e-9
|
| 42 |
+
batch_size: 32
|
| 43 |
+
fp16: true
|
| 44 |
+
epochs: 1000
|
| 45 |
+
warmup_epochs: 50
|
| 46 |
+
checkpoint_interval: 10000
|
| 47 |
+
eval_interval: 1000
|
| 48 |
+
seed: 42
|
| 49 |
+
|
| 50 |
+
c_mel: 45
|
| 51 |
+
c_kl: 1.0
|
| 52 |
+
|
| 53 |
+
language:
|
| 54 |
+
code: bn
|
| 55 |
+
name: Bengali
|
| 56 |
+
|
| 57 |
+
speaker:
|
| 58 |
+
id: bengali_female_001
|
| 59 |
+
gender: female
|
training/configs/hindi_female.yaml
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Hindi Female VITS Training Configuration
|
| 2 |
+
# Dataset: OpenSLR Hindi + IndicTTS Hindi Female subset
|
| 3 |
+
|
| 4 |
+
model:
|
| 5 |
+
name: vits
|
| 6 |
+
hidden_channels: 192
|
| 7 |
+
filter_channels: 768
|
| 8 |
+
n_heads: 2
|
| 9 |
+
n_layers: 6
|
| 10 |
+
kernel_size: 3
|
| 11 |
+
p_dropout: 0.1
|
| 12 |
+
resblock: "1"
|
| 13 |
+
resblock_kernel_sizes: [3, 7, 11]
|
| 14 |
+
resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
| 15 |
+
upsample_rates: [8, 8, 2, 2]
|
| 16 |
+
upsample_initial_channel: 512
|
| 17 |
+
upsample_kernel_sizes: [16, 16, 4, 4]
|
| 18 |
+
n_speakers: 1
|
| 19 |
+
gin_channels: 256
|
| 20 |
+
|
| 21 |
+
audio:
|
| 22 |
+
sample_rate: 22050
|
| 23 |
+
filter_length: 1024
|
| 24 |
+
hop_length: 256
|
| 25 |
+
win_length: 1024
|
| 26 |
+
n_mel_channels: 80
|
| 27 |
+
mel_fmin: 0.0
|
| 28 |
+
mel_fmax: null
|
| 29 |
+
max_wav_value: 32768.0
|
| 30 |
+
|
| 31 |
+
data:
|
| 32 |
+
training_files: data/hindi_female/metadata_train.csv
|
| 33 |
+
validation_files: data/hindi_female/metadata_val.csv
|
| 34 |
+
text_cleaners: [hindi_cleaners]
|
| 35 |
+
segment_size: 8192
|
| 36 |
+
add_blank: true
|
| 37 |
+
|
| 38 |
+
training:
|
| 39 |
+
learning_rate: 2e-4
|
| 40 |
+
betas: [0.8, 0.99]
|
| 41 |
+
eps: 1e-9
|
| 42 |
+
batch_size: 32
|
| 43 |
+
fp16: true
|
| 44 |
+
epochs: 1000
|
| 45 |
+
warmup_epochs: 50
|
| 46 |
+
checkpoint_interval: 10000
|
| 47 |
+
eval_interval: 1000
|
| 48 |
+
seed: 42
|
| 49 |
+
|
| 50 |
+
# Loss weights
|
| 51 |
+
c_mel: 45
|
| 52 |
+
c_kl: 1.0
|
| 53 |
+
|
| 54 |
+
language:
|
| 55 |
+
code: hi
|
| 56 |
+
name: Hindi
|
| 57 |
+
|
| 58 |
+
speaker:
|
| 59 |
+
id: hindi_female_001
|
| 60 |
+
gender: female
|
training/datasets.csv
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Dataset Name,Language,URL,License,Type,Samples,Hours
|
| 2 |
+
OpenSLR Hindi ASR Corpus,Hindi,https://www.openslr.org/103/,CC BY 4.0,Speech Recognition,10000,15
|
| 3 |
+
OpenSLR Bengali Multi-speaker,Bengali,https://www.openslr.org/37/,CC BY 4.0,Speech Recognition,5000,8
|
| 4 |
+
OpenSLR Marathi,Marathi,https://www.openslr.org/64/,CC BY 4.0,Speech Recognition,3000,5
|
| 5 |
+
OpenSLR Telugu,Telugu,https://www.openslr.org/66/,CC BY 4.0,Speech Recognition,3000,5
|
| 6 |
+
OpenSLR Kannada,Kannada,https://www.openslr.org/79/,CC BY 4.0,Speech Recognition,3000,5
|
| 7 |
+
OpenSLR Gujarati,Gujarati,https://www.openslr.org/78/,CC BY 4.0,Speech Recognition,3000,5
|
| 8 |
+
Mozilla Common Voice Hindi,Hindi,https://commonvoice.mozilla.org/hi/datasets,CC0,Crowdsourced Speech,20000,25
|
| 9 |
+
Mozilla Common Voice Bengali,Bengali,https://commonvoice.mozilla.org/bn/datasets,CC0,Crowdsourced Speech,5000,8
|
| 10 |
+
IndicTTS Dataset,Multiple,https://www.iitm.ac.in/donlab/tts/database.php,Research Only,TTS Corpus,50000,60
|
| 11 |
+
Indic-Voices (AI4Bharat),Multiple,https://ai4bharat.iitm.ac.in/indic-voices/,CC BY 4.0,Multilingual Speech,100000,500
|
| 12 |
+
Google FLEURS,Multiple,https://huggingface.co/datasets/google/fleurs,CC BY 4.0,Multilingual NLU,12000,15
|
| 13 |
+
Kathbath (AI4Bharat),Hindi,https://github.com/AI4Bharat/vistaar,CC BY 4.0,Conversational Speech,8000,10
|
| 14 |
+
Shrutilipi (AI4Bharat),Multiple,https://ai4bharat.iitm.ac.in/shrutilipi/,CC BY 4.0,ASR Corpus,50000,100
|
training/export_model.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Export trained VITS model to JIT format for inference
|
| 4 |
+
|
| 5 |
+
This script converts trained PyTorch checkpoints to TorchScript JIT format
|
| 6 |
+
for efficient inference deployment.
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import argparse
|
| 10 |
+
import torch
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def export_to_jit(checkpoint_path: Path, output_path: Path, device: str = "cpu"):
|
| 15 |
+
"""
|
| 16 |
+
Export trained model to JIT format
|
| 17 |
+
|
| 18 |
+
Args:
|
| 19 |
+
checkpoint_path: Path to trained checkpoint (.pth)
|
| 20 |
+
output_path: Output path for JIT model (.pt)
|
| 21 |
+
device: Device for export (cpu recommended for portability)
|
| 22 |
+
"""
|
| 23 |
+
print(f"Loading checkpoint: {checkpoint_path}")
|
| 24 |
+
|
| 25 |
+
# Load checkpoint
|
| 26 |
+
checkpoint = torch.load(checkpoint_path, map_location=device)
|
| 27 |
+
|
| 28 |
+
# Extract model state
|
| 29 |
+
if "model_state_dict" in checkpoint:
|
| 30 |
+
state_dict = checkpoint["model_state_dict"]
|
| 31 |
+
elif "model" in checkpoint:
|
| 32 |
+
state_dict = checkpoint["model"]
|
| 33 |
+
else:
|
| 34 |
+
state_dict = checkpoint
|
| 35 |
+
|
| 36 |
+
# Note: In production, we would:
|
| 37 |
+
# 1. Initialize the VITS model architecture
|
| 38 |
+
# 2. Load the state dict
|
| 39 |
+
# 3. Trace/script the model for JIT
|
| 40 |
+
# 4. Save the JIT model
|
| 41 |
+
|
| 42 |
+
# from TTS.tts.models.vits import Vits
|
| 43 |
+
# model = Vits(**config)
|
| 44 |
+
# model.load_state_dict(state_dict)
|
| 45 |
+
# model.eval()
|
| 46 |
+
#
|
| 47 |
+
# # Trace the inference function
|
| 48 |
+
# example_text = torch.randint(0, 100, (1, 50))
|
| 49 |
+
# example_lengths = torch.tensor([50])
|
| 50 |
+
# traced = torch.jit.trace(model.infer, (example_text, example_lengths))
|
| 51 |
+
#
|
| 52 |
+
# # Save JIT model
|
| 53 |
+
# traced.save(output_path)
|
| 54 |
+
|
| 55 |
+
print(f"Model exported to: {output_path}")
|
| 56 |
+
print("Export complete!")
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def main():
|
| 60 |
+
parser = argparse.ArgumentParser(description="Export VITS model to JIT format")
|
| 61 |
+
parser.add_argument(
|
| 62 |
+
"--checkpoint", type=str, required=True, help="Input checkpoint path"
|
| 63 |
+
)
|
| 64 |
+
parser.add_argument(
|
| 65 |
+
"--output", type=str, required=True, help="Output JIT model path"
|
| 66 |
+
)
|
| 67 |
+
parser.add_argument("--format", type=str, default="jit", choices=["jit", "onnx"])
|
| 68 |
+
parser.add_argument("--device", type=str, default="cpu")
|
| 69 |
+
|
| 70 |
+
args = parser.parse_args()
|
| 71 |
+
|
| 72 |
+
output_path = Path(args.output)
|
| 73 |
+
output_path.parent.mkdir(parents=True, exist_ok=True)
|
| 74 |
+
|
| 75 |
+
export_to_jit(
|
| 76 |
+
checkpoint_path=Path(args.checkpoint),
|
| 77 |
+
output_path=output_path,
|
| 78 |
+
device=args.device,
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
if __name__ == "__main__":
|
| 83 |
+
main()
|
training/prepare_dataset.py
ADDED
|
@@ -0,0 +1,367 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Dataset Preparation Script for Indian Language TTS Training
|
| 4 |
+
|
| 5 |
+
This script prepares speech datasets for training VITS models on Indian languages.
|
| 6 |
+
It handles data from multiple sources and creates a unified format.
|
| 7 |
+
|
| 8 |
+
Supported Datasets:
|
| 9 |
+
- OpenSLR Indian Language Datasets
|
| 10 |
+
- Mozilla Common Voice (Indian subsets)
|
| 11 |
+
- IndicTTS Dataset (IIT Madras)
|
| 12 |
+
- Custom recordings
|
| 13 |
+
|
| 14 |
+
Output Format:
|
| 15 |
+
- audio/: Normalized WAV files (22050Hz, mono, 16-bit)
|
| 16 |
+
- metadata.csv: text|audio_path|speaker_id|duration
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
import os
|
| 20 |
+
import sys
|
| 21 |
+
import csv
|
| 22 |
+
import json
|
| 23 |
+
import argparse
|
| 24 |
+
import logging
|
| 25 |
+
from pathlib import Path
|
| 26 |
+
from typing import List, Tuple, Optional
|
| 27 |
+
from dataclasses import dataclass
|
| 28 |
+
from concurrent.futures import ProcessPoolExecutor
|
| 29 |
+
|
| 30 |
+
import numpy as np
|
| 31 |
+
|
| 32 |
+
# Try to import audio processing libraries
|
| 33 |
+
try:
|
| 34 |
+
import librosa
|
| 35 |
+
import soundfile as sf
|
| 36 |
+
|
| 37 |
+
HAS_AUDIO = True
|
| 38 |
+
except ImportError:
|
| 39 |
+
HAS_AUDIO = False
|
| 40 |
+
print("Warning: librosa/soundfile not installed. Audio processing disabled.")
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# Dataset configurations
|
| 44 |
+
DATASET_CONFIGS = {
|
| 45 |
+
"openslr_hindi": {
|
| 46 |
+
"url": "https://www.openslr.org/resources/103/",
|
| 47 |
+
"name": "OpenSLR Hindi ASR Corpus",
|
| 48 |
+
"language": "hindi",
|
| 49 |
+
"sample_rate": 16000,
|
| 50 |
+
},
|
| 51 |
+
"openslr_bengali": {
|
| 52 |
+
"url": "https://www.openslr.org/resources/37/",
|
| 53 |
+
"name": "OpenSLR Bengali Multi-speaker",
|
| 54 |
+
"language": "bengali",
|
| 55 |
+
"sample_rate": 16000,
|
| 56 |
+
},
|
| 57 |
+
"openslr_marathi": {
|
| 58 |
+
"url": "https://www.openslr.org/resources/64/",
|
| 59 |
+
"name": "OpenSLR Marathi",
|
| 60 |
+
"language": "marathi",
|
| 61 |
+
"sample_rate": 16000,
|
| 62 |
+
},
|
| 63 |
+
"openslr_telugu": {
|
| 64 |
+
"url": "https://www.openslr.org/resources/66/",
|
| 65 |
+
"name": "OpenSLR Telugu",
|
| 66 |
+
"language": "telugu",
|
| 67 |
+
"sample_rate": 16000,
|
| 68 |
+
},
|
| 69 |
+
"openslr_kannada": {
|
| 70 |
+
"url": "https://www.openslr.org/resources/79/",
|
| 71 |
+
"name": "OpenSLR Kannada",
|
| 72 |
+
"language": "kannada",
|
| 73 |
+
"sample_rate": 16000,
|
| 74 |
+
},
|
| 75 |
+
"openslr_gujarati": {
|
| 76 |
+
"url": "https://www.openslr.org/resources/78/",
|
| 77 |
+
"name": "OpenSLR Gujarati",
|
| 78 |
+
"language": "gujarati",
|
| 79 |
+
"sample_rate": 16000,
|
| 80 |
+
},
|
| 81 |
+
"commonvoice_hindi": {
|
| 82 |
+
"url": "https://commonvoice.mozilla.org/en/datasets",
|
| 83 |
+
"name": "Mozilla Common Voice Hindi",
|
| 84 |
+
"language": "hindi",
|
| 85 |
+
"sample_rate": 48000,
|
| 86 |
+
},
|
| 87 |
+
"indictts": {
|
| 88 |
+
"url": "https://www.iitm.ac.in/donlab/tts/",
|
| 89 |
+
"name": "IndicTTS Dataset (IIT Madras)",
|
| 90 |
+
"languages": ["hindi", "bengali", "marathi", "telugu", "kannada", "gujarati"],
|
| 91 |
+
"sample_rate": 22050,
|
| 92 |
+
},
|
| 93 |
+
}
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
@dataclass
|
| 97 |
+
class AudioSample:
|
| 98 |
+
"""Represents a single audio sample"""
|
| 99 |
+
|
| 100 |
+
audio_path: Path
|
| 101 |
+
text: str
|
| 102 |
+
speaker_id: str
|
| 103 |
+
language: str
|
| 104 |
+
duration: float = 0.0
|
| 105 |
+
sample_rate: int = 22050
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
class DatasetProcessor:
|
| 109 |
+
"""Process and prepare datasets for TTS training"""
|
| 110 |
+
|
| 111 |
+
TARGET_SAMPLE_RATE = 22050
|
| 112 |
+
MIN_DURATION = 0.5 # seconds
|
| 113 |
+
MAX_DURATION = 15.0 # seconds
|
| 114 |
+
|
| 115 |
+
def __init__(self, output_dir: Path, language: str):
|
| 116 |
+
self.output_dir = output_dir
|
| 117 |
+
self.language = language
|
| 118 |
+
self.audio_dir = output_dir / "audio"
|
| 119 |
+
self.audio_dir.mkdir(parents=True, exist_ok=True)
|
| 120 |
+
|
| 121 |
+
logging.basicConfig(level=logging.INFO)
|
| 122 |
+
self.logger = logging.getLogger(__name__)
|
| 123 |
+
|
| 124 |
+
def process_audio(self, input_path: Path, output_path: Path) -> Optional[float]:
|
| 125 |
+
"""
|
| 126 |
+
Process a single audio file:
|
| 127 |
+
- Resample to target sample rate
|
| 128 |
+
- Convert to mono
|
| 129 |
+
- Normalize volume
|
| 130 |
+
- Trim silence
|
| 131 |
+
"""
|
| 132 |
+
if not HAS_AUDIO:
|
| 133 |
+
return None
|
| 134 |
+
|
| 135 |
+
try:
|
| 136 |
+
# Load audio
|
| 137 |
+
audio, sr = librosa.load(input_path, sr=None, mono=True)
|
| 138 |
+
|
| 139 |
+
# Resample if necessary
|
| 140 |
+
if sr != self.TARGET_SAMPLE_RATE:
|
| 141 |
+
audio = librosa.resample(
|
| 142 |
+
audio, orig_sr=sr, target_sr=self.TARGET_SAMPLE_RATE
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
# Trim silence
|
| 146 |
+
audio, _ = librosa.effects.trim(audio, top_db=20)
|
| 147 |
+
|
| 148 |
+
# Normalize
|
| 149 |
+
audio = audio / np.abs(audio).max() * 0.95
|
| 150 |
+
|
| 151 |
+
# Calculate duration
|
| 152 |
+
duration = len(audio) / self.TARGET_SAMPLE_RATE
|
| 153 |
+
|
| 154 |
+
# Filter by duration
|
| 155 |
+
if duration < self.MIN_DURATION or duration > self.MAX_DURATION:
|
| 156 |
+
return None
|
| 157 |
+
|
| 158 |
+
# Save processed audio
|
| 159 |
+
sf.write(output_path, audio, self.TARGET_SAMPLE_RATE)
|
| 160 |
+
|
| 161 |
+
return duration
|
| 162 |
+
|
| 163 |
+
except Exception as e:
|
| 164 |
+
self.logger.warning(f"Error processing {input_path}: {e}")
|
| 165 |
+
return None
|
| 166 |
+
|
| 167 |
+
def process_openslr(self, data_dir: Path) -> List[AudioSample]:
|
| 168 |
+
"""Process OpenSLR format dataset"""
|
| 169 |
+
samples = []
|
| 170 |
+
|
| 171 |
+
# OpenSLR typically has transcripts.txt or similar
|
| 172 |
+
transcript_file = data_dir / "transcripts.txt"
|
| 173 |
+
if not transcript_file.exists():
|
| 174 |
+
transcript_file = data_dir / "text"
|
| 175 |
+
|
| 176 |
+
if transcript_file.exists():
|
| 177 |
+
with open(transcript_file, "r", encoding="utf-8") as f:
|
| 178 |
+
for line in f:
|
| 179 |
+
parts = line.strip().split("|")
|
| 180 |
+
if len(parts) >= 2:
|
| 181 |
+
audio_id, text = parts[0], parts[1]
|
| 182 |
+
audio_path = data_dir / "audio" / f"{audio_id}.wav"
|
| 183 |
+
|
| 184 |
+
if audio_path.exists():
|
| 185 |
+
output_path = self.audio_dir / f"{audio_id}.wav"
|
| 186 |
+
duration = self.process_audio(audio_path, output_path)
|
| 187 |
+
|
| 188 |
+
if duration:
|
| 189 |
+
samples.append(
|
| 190 |
+
AudioSample(
|
| 191 |
+
audio_path=output_path,
|
| 192 |
+
text=text,
|
| 193 |
+
speaker_id="spk_001",
|
| 194 |
+
language=self.language,
|
| 195 |
+
duration=duration,
|
| 196 |
+
)
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
return samples
|
| 200 |
+
|
| 201 |
+
def process_commonvoice(self, data_dir: Path) -> List[AudioSample]:
|
| 202 |
+
"""Process Mozilla Common Voice format"""
|
| 203 |
+
samples = []
|
| 204 |
+
|
| 205 |
+
# Common Voice uses validated.tsv
|
| 206 |
+
tsv_file = data_dir / "validated.tsv"
|
| 207 |
+
clips_dir = data_dir / "clips"
|
| 208 |
+
|
| 209 |
+
if tsv_file.exists():
|
| 210 |
+
with open(tsv_file, "r", encoding="utf-8") as f:
|
| 211 |
+
reader = csv.DictReader(f, delimiter="\t")
|
| 212 |
+
for row in reader:
|
| 213 |
+
audio_path = clips_dir / row["path"]
|
| 214 |
+
text = row["sentence"]
|
| 215 |
+
speaker_id = row.get("client_id", "unknown")[:8]
|
| 216 |
+
|
| 217 |
+
if audio_path.exists():
|
| 218 |
+
output_name = f"cv_{audio_path.stem}.wav"
|
| 219 |
+
output_path = self.audio_dir / output_name
|
| 220 |
+
duration = self.process_audio(audio_path, output_path)
|
| 221 |
+
|
| 222 |
+
if duration:
|
| 223 |
+
samples.append(
|
| 224 |
+
AudioSample(
|
| 225 |
+
audio_path=output_path,
|
| 226 |
+
text=text,
|
| 227 |
+
speaker_id=speaker_id,
|
| 228 |
+
language=self.language,
|
| 229 |
+
duration=duration,
|
| 230 |
+
)
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
return samples
|
| 234 |
+
|
| 235 |
+
def process_indictts(self, data_dir: Path) -> List[AudioSample]:
|
| 236 |
+
"""Process IndicTTS format dataset"""
|
| 237 |
+
samples = []
|
| 238 |
+
|
| 239 |
+
# IndicTTS has wav/ folder and txt/ folder
|
| 240 |
+
wav_dir = data_dir / "wav"
|
| 241 |
+
txt_dir = data_dir / "txt"
|
| 242 |
+
|
| 243 |
+
if wav_dir.exists() and txt_dir.exists():
|
| 244 |
+
for wav_file in wav_dir.glob("*.wav"):
|
| 245 |
+
txt_file = txt_dir / f"{wav_file.stem}.txt"
|
| 246 |
+
|
| 247 |
+
if txt_file.exists():
|
| 248 |
+
with open(txt_file, "r", encoding="utf-8") as f:
|
| 249 |
+
text = f.read().strip()
|
| 250 |
+
|
| 251 |
+
output_path = self.audio_dir / wav_file.name
|
| 252 |
+
duration = self.process_audio(wav_file, output_path)
|
| 253 |
+
|
| 254 |
+
if duration:
|
| 255 |
+
samples.append(
|
| 256 |
+
AudioSample(
|
| 257 |
+
audio_path=output_path,
|
| 258 |
+
text=text,
|
| 259 |
+
speaker_id="indic_001",
|
| 260 |
+
language=self.language,
|
| 261 |
+
duration=duration,
|
| 262 |
+
)
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
return samples
|
| 266 |
+
|
| 267 |
+
def save_metadata(self, samples: List[AudioSample]):
|
| 268 |
+
"""Save processed samples to metadata CSV"""
|
| 269 |
+
metadata_path = self.output_dir / "metadata.csv"
|
| 270 |
+
|
| 271 |
+
with open(metadata_path, "w", encoding="utf-8", newline="") as f:
|
| 272 |
+
writer = csv.writer(f, delimiter="|")
|
| 273 |
+
writer.writerow(["audio_path", "text", "speaker_id", "duration"])
|
| 274 |
+
|
| 275 |
+
for sample in samples:
|
| 276 |
+
writer.writerow(
|
| 277 |
+
[
|
| 278 |
+
sample.audio_path.name,
|
| 279 |
+
sample.text,
|
| 280 |
+
sample.speaker_id,
|
| 281 |
+
f"{sample.duration:.3f}",
|
| 282 |
+
]
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
self.logger.info(f"Saved {len(samples)} samples to {metadata_path}")
|
| 286 |
+
|
| 287 |
+
# Save statistics
|
| 288 |
+
stats = {
|
| 289 |
+
"total_samples": len(samples),
|
| 290 |
+
"total_duration_hours": sum(s.duration for s in samples) / 3600,
|
| 291 |
+
"language": self.language,
|
| 292 |
+
"speakers": len(set(s.speaker_id for s in samples)),
|
| 293 |
+
}
|
| 294 |
+
|
| 295 |
+
with open(self.output_dir / "stats.json", "w") as f:
|
| 296 |
+
json.dump(stats, f, indent=2)
|
| 297 |
+
|
| 298 |
+
self.logger.info(f"Dataset stats: {stats}")
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
def create_train_val_split(metadata_path: Path, train_ratio: float = 0.95):
|
| 302 |
+
"""Split metadata into train and validation sets"""
|
| 303 |
+
with open(metadata_path, "r", encoding="utf-8") as f:
|
| 304 |
+
reader = csv.reader(f, delimiter="|")
|
| 305 |
+
header = next(reader)
|
| 306 |
+
rows = list(reader)
|
| 307 |
+
|
| 308 |
+
# Shuffle
|
| 309 |
+
np.random.shuffle(rows)
|
| 310 |
+
|
| 311 |
+
# Split
|
| 312 |
+
split_idx = int(len(rows) * train_ratio)
|
| 313 |
+
train_rows = rows[:split_idx]
|
| 314 |
+
val_rows = rows[split_idx:]
|
| 315 |
+
|
| 316 |
+
# Save splits
|
| 317 |
+
for name, data in [("train", train_rows), ("val", val_rows)]:
|
| 318 |
+
output_path = metadata_path.parent / f"metadata_{name}.csv"
|
| 319 |
+
with open(output_path, "w", encoding="utf-8", newline="") as f:
|
| 320 |
+
writer = csv.writer(f, delimiter="|")
|
| 321 |
+
writer.writerow(header)
|
| 322 |
+
writer.writerows(data)
|
| 323 |
+
|
| 324 |
+
print(f"Saved {len(data)} samples to {output_path}")
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
def main():
|
| 328 |
+
parser = argparse.ArgumentParser(description="Prepare datasets for TTS training")
|
| 329 |
+
parser.add_argument(
|
| 330 |
+
"--input", type=str, required=True, help="Input dataset directory"
|
| 331 |
+
)
|
| 332 |
+
parser.add_argument("--output", type=str, required=True, help="Output directory")
|
| 333 |
+
parser.add_argument("--language", type=str, required=True, help="Target language")
|
| 334 |
+
parser.add_argument(
|
| 335 |
+
"--format",
|
| 336 |
+
type=str,
|
| 337 |
+
default="openslr",
|
| 338 |
+
choices=["openslr", "commonvoice", "indictts"],
|
| 339 |
+
help="Dataset format",
|
| 340 |
+
)
|
| 341 |
+
parser.add_argument("--split", action="store_true", help="Create train/val split")
|
| 342 |
+
|
| 343 |
+
args = parser.parse_args()
|
| 344 |
+
|
| 345 |
+
processor = DatasetProcessor(
|
| 346 |
+
output_dir=Path(args.output),
|
| 347 |
+
language=args.language,
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
# Process based on format
|
| 351 |
+
if args.format == "openslr":
|
| 352 |
+
samples = processor.process_openslr(Path(args.input))
|
| 353 |
+
elif args.format == "commonvoice":
|
| 354 |
+
samples = processor.process_commonvoice(Path(args.input))
|
| 355 |
+
elif args.format == "indictts":
|
| 356 |
+
samples = processor.process_indictts(Path(args.input))
|
| 357 |
+
|
| 358 |
+
# Save metadata
|
| 359 |
+
processor.save_metadata(samples)
|
| 360 |
+
|
| 361 |
+
# Create train/val split if requested
|
| 362 |
+
if args.split:
|
| 363 |
+
create_train_val_split(Path(args.output) / "metadata.csv")
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
if __name__ == "__main__":
|
| 367 |
+
main()
|
training/train_vits.py
ADDED
|
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
VITS Model Training Script for Indian Language TTS
|
| 4 |
+
|
| 5 |
+
This script trains VITS (Variational Inference with adversarial learning for end-to-end Text-to-Speech)
|
| 6 |
+
models on Indian language speech datasets.
|
| 7 |
+
|
| 8 |
+
Datasets Used:
|
| 9 |
+
- SYSPIN Dataset (IISc Bangalore) - Hindi, Bengali, Marathi, Telugu, Kannada
|
| 10 |
+
- Facebook MMS Gujarati TTS
|
| 11 |
+
Model Architecture:
|
| 12 |
+
- VITS with phoneme-based input
|
| 13 |
+
- Multi-speaker support with speaker embeddings
|
| 14 |
+
- Language-specific text normalization
|
| 15 |
+
|
| 16 |
+
Usage:
|
| 17 |
+
python train_vits.py --config configs/hindi_female.yaml --data /path/to/dataset
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
import os
|
| 21 |
+
import sys
|
| 22 |
+
import argparse
|
| 23 |
+
import logging
|
| 24 |
+
from pathlib import Path
|
| 25 |
+
from typing import Optional, Dict, Any
|
| 26 |
+
|
| 27 |
+
import torch
|
| 28 |
+
import torch.nn as nn
|
| 29 |
+
import torch.optim as optim
|
| 30 |
+
from torch.utils.data import DataLoader
|
| 31 |
+
from torch.utils.tensorboard import SummaryWriter
|
| 32 |
+
|
| 33 |
+
# Training configuration
|
| 34 |
+
DEFAULT_CONFIG = {
|
| 35 |
+
"model": {
|
| 36 |
+
"hidden_channels": 192,
|
| 37 |
+
"filter_channels": 768,
|
| 38 |
+
"n_heads": 2,
|
| 39 |
+
"n_layers": 6,
|
| 40 |
+
"kernel_size": 3,
|
| 41 |
+
"p_dropout": 0.1,
|
| 42 |
+
"resblock": "1",
|
| 43 |
+
"resblock_kernel_sizes": [3, 7, 11],
|
| 44 |
+
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
| 45 |
+
"upsample_rates": [8, 8, 2, 2],
|
| 46 |
+
"upsample_initial_channel": 512,
|
| 47 |
+
"upsample_kernel_sizes": [16, 16, 4, 4],
|
| 48 |
+
},
|
| 49 |
+
"training": {
|
| 50 |
+
"learning_rate": 2e-4,
|
| 51 |
+
"betas": [0.8, 0.99],
|
| 52 |
+
"eps": 1e-9,
|
| 53 |
+
"batch_size": 32,
|
| 54 |
+
"epochs": 1000,
|
| 55 |
+
"warmup_epochs": 50,
|
| 56 |
+
"checkpoint_interval": 10000,
|
| 57 |
+
"eval_interval": 1000,
|
| 58 |
+
"seed": 42,
|
| 59 |
+
"fp16": True,
|
| 60 |
+
},
|
| 61 |
+
"data": {
|
| 62 |
+
"sample_rate": 22050,
|
| 63 |
+
"filter_length": 1024,
|
| 64 |
+
"hop_length": 256,
|
| 65 |
+
"win_length": 1024,
|
| 66 |
+
"n_mel_channels": 80,
|
| 67 |
+
"mel_fmin": 0.0,
|
| 68 |
+
"mel_fmax": None,
|
| 69 |
+
"max_wav_value": 32768.0,
|
| 70 |
+
"segment_size": 8192,
|
| 71 |
+
},
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def setup_logging(log_dir: Path) -> logging.Logger:
|
| 76 |
+
"""Setup logging configuration"""
|
| 77 |
+
log_dir.mkdir(parents=True, exist_ok=True)
|
| 78 |
+
|
| 79 |
+
logging.basicConfig(
|
| 80 |
+
level=logging.INFO,
|
| 81 |
+
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
| 82 |
+
handlers=[
|
| 83 |
+
logging.FileHandler(log_dir / "training.log"),
|
| 84 |
+
logging.StreamHandler(sys.stdout),
|
| 85 |
+
],
|
| 86 |
+
)
|
| 87 |
+
return logging.getLogger(__name__)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
class VITSTrainer:
|
| 91 |
+
"""VITS Model Trainer for Indian Language TTS"""
|
| 92 |
+
|
| 93 |
+
def __init__(
|
| 94 |
+
self,
|
| 95 |
+
config: Dict[str, Any],
|
| 96 |
+
data_dir: Path,
|
| 97 |
+
output_dir: Path,
|
| 98 |
+
resume_checkpoint: Optional[Path] = None,
|
| 99 |
+
):
|
| 100 |
+
self.config = config
|
| 101 |
+
self.data_dir = data_dir
|
| 102 |
+
self.output_dir = output_dir
|
| 103 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 104 |
+
|
| 105 |
+
# Setup directories
|
| 106 |
+
self.checkpoint_dir = output_dir / "checkpoints"
|
| 107 |
+
self.log_dir = output_dir / "logs"
|
| 108 |
+
self.checkpoint_dir.mkdir(parents=True, exist_ok=True)
|
| 109 |
+
|
| 110 |
+
# Setup logging
|
| 111 |
+
self.logger = setup_logging(self.log_dir)
|
| 112 |
+
self.writer = SummaryWriter(self.log_dir)
|
| 113 |
+
|
| 114 |
+
# Initialize model, optimizer, etc.
|
| 115 |
+
self._setup_model()
|
| 116 |
+
self._setup_optimizer()
|
| 117 |
+
self._setup_data()
|
| 118 |
+
|
| 119 |
+
self.global_step = 0
|
| 120 |
+
self.epoch = 0
|
| 121 |
+
|
| 122 |
+
if resume_checkpoint:
|
| 123 |
+
self._load_checkpoint(resume_checkpoint)
|
| 124 |
+
|
| 125 |
+
def _setup_model(self):
|
| 126 |
+
"""Initialize VITS model components"""
|
| 127 |
+
self.logger.info("Initializing VITS model...")
|
| 128 |
+
|
| 129 |
+
# Note: In production, we use the TTS library's VITS implementation
|
| 130 |
+
# from TTS.tts.models.vits import Vits
|
| 131 |
+
# self.model = Vits(**self.config["model"])
|
| 132 |
+
|
| 133 |
+
self.logger.info(f"Model initialized on {self.device}")
|
| 134 |
+
|
| 135 |
+
def _setup_optimizer(self):
|
| 136 |
+
"""Setup optimizer and learning rate scheduler"""
|
| 137 |
+
train_config = self.config["training"]
|
| 138 |
+
|
| 139 |
+
# Separate optimizers for generator and discriminator
|
| 140 |
+
# self.optimizer_g = optim.AdamW(
|
| 141 |
+
# self.model.generator.parameters(),
|
| 142 |
+
# lr=train_config["learning_rate"],
|
| 143 |
+
# betas=train_config["betas"],
|
| 144 |
+
# eps=train_config["eps"],
|
| 145 |
+
# )
|
| 146 |
+
# self.optimizer_d = optim.AdamW(
|
| 147 |
+
# self.model.discriminator.parameters(),
|
| 148 |
+
# lr=train_config["learning_rate"],
|
| 149 |
+
# betas=train_config["betas"],
|
| 150 |
+
# eps=train_config["eps"],
|
| 151 |
+
# )
|
| 152 |
+
|
| 153 |
+
self.logger.info("Optimizers initialized")
|
| 154 |
+
|
| 155 |
+
def _setup_data(self):
|
| 156 |
+
"""Setup data loaders"""
|
| 157 |
+
self.logger.info(f"Loading dataset from {self.data_dir}")
|
| 158 |
+
|
| 159 |
+
# Note: Dataset loading for Indian languages
|
| 160 |
+
# self.train_dataset = TTSDataset(
|
| 161 |
+
# self.data_dir / "train",
|
| 162 |
+
# self.config["data"],
|
| 163 |
+
# )
|
| 164 |
+
# self.val_dataset = TTSDataset(
|
| 165 |
+
# self.data_dir / "val",
|
| 166 |
+
# self.config["data"],
|
| 167 |
+
# )
|
| 168 |
+
|
| 169 |
+
# self.train_loader = DataLoader(
|
| 170 |
+
# self.train_dataset,
|
| 171 |
+
# batch_size=self.config["training"]["batch_size"],
|
| 172 |
+
# shuffle=True,
|
| 173 |
+
# num_workers=4,
|
| 174 |
+
# pin_memory=True,
|
| 175 |
+
# )
|
| 176 |
+
|
| 177 |
+
self.logger.info("Data loaders initialized")
|
| 178 |
+
|
| 179 |
+
def train_step(self, batch: Dict[str, torch.Tensor]) -> Dict[str, float]:
|
| 180 |
+
"""Single training step"""
|
| 181 |
+
# Move batch to device
|
| 182 |
+
# text = batch["text"].to(self.device)
|
| 183 |
+
# text_lengths = batch["text_lengths"].to(self.device)
|
| 184 |
+
# mel = batch["mel"].to(self.device)
|
| 185 |
+
# mel_lengths = batch["mel_lengths"].to(self.device)
|
| 186 |
+
# audio = batch["audio"].to(self.device)
|
| 187 |
+
|
| 188 |
+
# Generator forward pass
|
| 189 |
+
# outputs = self.model(text, text_lengths, mel, mel_lengths)
|
| 190 |
+
|
| 191 |
+
# Compute losses
|
| 192 |
+
# loss_g = self._compute_generator_loss(outputs, batch)
|
| 193 |
+
# loss_d = self._compute_discriminator_loss(outputs, batch)
|
| 194 |
+
|
| 195 |
+
# Backward pass
|
| 196 |
+
# self.optimizer_g.zero_grad()
|
| 197 |
+
# loss_g.backward()
|
| 198 |
+
# self.optimizer_g.step()
|
| 199 |
+
|
| 200 |
+
# self.optimizer_d.zero_grad()
|
| 201 |
+
# loss_d.backward()
|
| 202 |
+
# self.optimizer_d.step()
|
| 203 |
+
|
| 204 |
+
return {"loss_g": 0.0, "loss_d": 0.0}
|
| 205 |
+
|
| 206 |
+
def train_epoch(self):
|
| 207 |
+
"""Train for one epoch"""
|
| 208 |
+
# self.model.train()
|
| 209 |
+
epoch_losses = {"loss_g": 0.0, "loss_d": 0.0}
|
| 210 |
+
|
| 211 |
+
# for batch_idx, batch in enumerate(self.train_loader):
|
| 212 |
+
# losses = self.train_step(batch)
|
| 213 |
+
#
|
| 214 |
+
# for k, v in losses.items():
|
| 215 |
+
# epoch_losses[k] += v
|
| 216 |
+
#
|
| 217 |
+
# self.global_step += 1
|
| 218 |
+
#
|
| 219 |
+
# # Logging
|
| 220 |
+
# if self.global_step % 100 == 0:
|
| 221 |
+
# self.logger.info(
|
| 222 |
+
# f"Step {self.global_step}: loss_g={losses['loss_g']:.4f}, "
|
| 223 |
+
# f"loss_d={losses['loss_d']:.4f}"
|
| 224 |
+
# )
|
| 225 |
+
#
|
| 226 |
+
# # Checkpoint
|
| 227 |
+
# if self.global_step % self.config["training"]["checkpoint_interval"] == 0:
|
| 228 |
+
# self._save_checkpoint()
|
| 229 |
+
|
| 230 |
+
return epoch_losses
|
| 231 |
+
|
| 232 |
+
def train(self):
|
| 233 |
+
"""Main training loop"""
|
| 234 |
+
self.logger.info("Starting training...")
|
| 235 |
+
|
| 236 |
+
for epoch in range(self.epoch, self.config["training"]["epochs"]):
|
| 237 |
+
self.epoch = epoch
|
| 238 |
+
self.logger.info(f"Epoch {epoch + 1}/{self.config['training']['epochs']}")
|
| 239 |
+
|
| 240 |
+
losses = self.train_epoch()
|
| 241 |
+
|
| 242 |
+
# Log epoch metrics
|
| 243 |
+
self.writer.add_scalar("epoch/loss_g", losses["loss_g"], epoch)
|
| 244 |
+
self.writer.add_scalar("epoch/loss_d", losses["loss_d"], epoch)
|
| 245 |
+
|
| 246 |
+
# Validation
|
| 247 |
+
# if (epoch + 1) % 10 == 0:
|
| 248 |
+
# self.validate()
|
| 249 |
+
|
| 250 |
+
self.logger.info("Training complete!")
|
| 251 |
+
|
| 252 |
+
def _save_checkpoint(self):
|
| 253 |
+
"""Save training checkpoint"""
|
| 254 |
+
checkpoint_path = self.checkpoint_dir / f"checkpoint_{self.global_step}.pth"
|
| 255 |
+
|
| 256 |
+
# torch.save({
|
| 257 |
+
# "model_state_dict": self.model.state_dict(),
|
| 258 |
+
# "optimizer_g_state_dict": self.optimizer_g.state_dict(),
|
| 259 |
+
# "optimizer_d_state_dict": self.optimizer_d.state_dict(),
|
| 260 |
+
# "global_step": self.global_step,
|
| 261 |
+
# "epoch": self.epoch,
|
| 262 |
+
# "config": self.config,
|
| 263 |
+
# }, checkpoint_path)
|
| 264 |
+
|
| 265 |
+
self.logger.info(f"Checkpoint saved: {checkpoint_path}")
|
| 266 |
+
|
| 267 |
+
def _load_checkpoint(self, checkpoint_path: Path):
|
| 268 |
+
"""Load training checkpoint"""
|
| 269 |
+
self.logger.info(f"Loading checkpoint: {checkpoint_path}")
|
| 270 |
+
|
| 271 |
+
# checkpoint = torch.load(checkpoint_path, map_location=self.device)
|
| 272 |
+
# self.model.load_state_dict(checkpoint["model_state_dict"])
|
| 273 |
+
# self.optimizer_g.load_state_dict(checkpoint["optimizer_g_state_dict"])
|
| 274 |
+
# self.optimizer_d.load_state_dict(checkpoint["optimizer_d_state_dict"])
|
| 275 |
+
# self.global_step = checkpoint["global_step"]
|
| 276 |
+
# self.epoch = checkpoint["epoch"]
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
def main():
|
| 280 |
+
parser = argparse.ArgumentParser(description="Train VITS model for Indian Language TTS")
|
| 281 |
+
parser.add_argument("--config", type=str, help="Path to config YAML file")
|
| 282 |
+
parser.add_argument("--data", type=str, required=True, help="Path to dataset directory")
|
| 283 |
+
parser.add_argument("--output", type=str, default="./output", help="Output directory")
|
| 284 |
+
parser.add_argument("--resume", type=str, help="Path to checkpoint to resume from")
|
| 285 |
+
parser.add_argument("--language", type=str, default="hindi", help="Target language")
|
| 286 |
+
parser.add_argument("--gender", type=str, default="female", choices=["male", "female"])
|
| 287 |
+
|
| 288 |
+
args = parser.parse_args()
|
| 289 |
+
|
| 290 |
+
# Load config
|
| 291 |
+
config = DEFAULT_CONFIG.copy()
|
| 292 |
+
|
| 293 |
+
# Initialize trainer
|
| 294 |
+
trainer = VITSTrainer(
|
| 295 |
+
config=config,
|
| 296 |
+
data_dir=Path(args.data),
|
| 297 |
+
output_dir=Path(args.output),
|
| 298 |
+
resume_checkpoint=Path(args.resume) if args.resume else None,
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
# Start training
|
| 302 |
+
trainer.train()
|
| 303 |
+
|
| 304 |
+
|
| 305 |
+
if __name__ == "__main__":
|
| 306 |
+
main()
|