PeterStacy's picture
Update README_CN.md
653b49d verified
---
license: apache-2.0
base_model:
- OpenGVLab/InternVL3-8B
---
[EN](README.md) | **中文**
# SenseNova-SI: 探索空间智能在多模态基础模型上尺度效应
<a href="https://github.com/OpenSenseNova/SenseNova-SI" target="_blank">
<img alt="Code" src="https://img.shields.io/badge/SenseNova_SI-Code-100000?style=flat-square&logo=github&logoColor=white" height="20" />
</a>
<a href="https://arxiv.org/abs/2511.13719" target="_blank">
<img alt="arXiv" src="https://img.shields.io/badge/arXiv-SenseNova_SI-red?logo=arxiv" height="20" />
</a>
<a href="https://github.com/EvolvingLMMs-Lab/EASI" target="_blank">
<img alt="Code" src="https://img.shields.io/badge/EASI-Code-100000?style=flat-square&logo=github&logoColor=white" height="20" />
</a>
<a href="https://huggingface.co/spaces/lmms-lab-si/EASI-Leaderboard" target="_blank">
<img alt="Leaderboard" src="https://img.shields.io/badge/%F0%9F%A4%97%20_EASI-Leaderboard-ffc107?color=ffc107&logoColor=white" height="20" />
</a>
## 概览
尽管多模态基础模型已取得显著进展,但在空间智能方面仍存在明显不足。
本研究基于成熟的多模态基础,包括视觉理解模型(如Qwen3-VL、InternVL3)和统一理解生成模型(如Bagel),从尺度效应(Scaling)的视角构建了**SenseNova-SI系列模型**
我们采用系统化方法构建了包含800万样本的SenseNova-SI-8M数据集,通过严格的空间能力分类体系培养高性能、高鲁棒性的空间能力。
该系列模型在多项空间智能基准测试中取得突破性表现,同时保持强大的通用多模态理解能力。
本研究进一步分析了数据规模的影响,揭示了多样化数据训练带来的涌现泛化能力,探讨了过拟合与语言捷径的风险,提出了空间思维链推理的初步研究,并验证了下游应用潜力。
SenseNova-SI是一个持续迭代的项目,所有新训练的多模态空间智能基础模型均将陆续开源,以推动空间智能领域的研究发展。
*后续 SenseNova-SI 将与更大规模的内部模型进行集成。*
## 发布信息
目前,我们基于流行的开源基础模型构建 SenseNova-SI,以最大化与现有研究流程的兼容性。
在本次发布中,我们推出
[**SenseNova-SI-1.2-InternVL3-8B**](https://huggingface.co/sensenova/SenseNova-SI-1.2-InternVL3-8B),
[**SenseNova-SI-1.1-Qwen2.5-VL-3B**](https://huggingface.co/sensenova/SenseNova-SI-1.1-Qwen2.5-VL-3B),
[**SenseNova-SI-1.1-Qwen2.5-VL-7B**](https://huggingface.co/sensenova/SenseNova-SI-1.1-Qwen2.5-VL-7B),
与[**SenseNova-SI-1.1-Qwen3-VL-8B**](https://huggingface.co/sensenova/SenseNova-SI-1.1-Qwen3-VL-8B),
其中**SenseNova-SI-1.2-InternVL3-8B**在八个近期发布的空间智能基准测试(**VSI****MMSI****MindCube****ViewSpatial****SITE****BLINK****3DSRBench****EmbSpatial-Bench**)上,
在同等模型规模下均取得了开源模型的最新最优性能(state-of-the-art)。
<table>
<thead>
<tr>
<th>Model</th>
<th>VSI</th>
<th>MMSI</th>
<th>MindCube-Tiny</th>
<th>ViewSpatial</th>
<th>SITE</th>
<th>BLINK</th>
<th>3DSRBench</th>
<th>EmbSpatial-Bench</th>
</tr>
</thead>
<tbody>
<tr style="background:#F2F0EF;font-weight:700;text-align:center;">
<td colspan="9"><em>Open-source Models (~2B)</em></td>
</tr>
<tr>
<td>InternVL3-2B</td><td>32.9</td><td>26.5</td><td>37.5</td><td>32.5</td><td>30.0</td><td>50.8</td><td>47.7</td><td>60.1</td>
</tr>
<tr>
<td>Qwen3-VL-2B-Instruct</td><td>50.3</td><td>28.9</td><td>34.5</td><td>36.9</td><td>35.6</td><td>53.2</td><td>47.5</td><td>70.1</td>
</tr>
<tr>
<td>MindCube-3B-RawQA-SFT</td><td>17.2</td><td>1.7</td><td>51.7</td><td>24.1</td><td>6.3</td><td>35.1</td><td>2.8</td><td>37.0</td>
</tr>
<tr>
<td>SpatialLadder-3B</td><td>44.8</td><td>27.4</td><td>43.4</td><td>39.8</td><td>27.9</td><td>43.0</td><td>42.8</td><td>58.2</td>
</tr>
<tr>
<td>SpatialMLLM-4B</td><td>46.3</td><td>26.1</td><td>33.4</td><td>34.6</td><td>18.0</td><td>40.5</td><td>36.2</td><td>50.0</td>
</tr>
<tr>
<td>VST-3B-SFT</td><td>57.9</td><td>30.2</td><td>35.9</td><td>52.8</td><td>35.8</td><td>58.8</td><td>54.1</td><td>69.0</td>
</tr>
<tr>
<td>Cambrian-S-3B</td><td>57.3</td><td>25.2</td><td>32.5</td><td>39.0</td><td>28.3</td><td>37.7</td><td>50.9</td><td>63.5</td>
</tr>
<tr style="background:#F2F0EF;font-weight:700;text-align:center;">
<td colspan="9"><em>Open-source Models (~8B)</em></td>
</tr>
<tr>
<td>InternVL3-8B</td><td>42.1</td><td>28.0</td><td>41.5</td><td>38.6</td><td>41.1</td><td>53.5</td><td>44.3</td><td>76.4</td>
</tr>
<tr>
<td>Qwen3-VL-8B-Instruct</td><td>57.9</td><td>31.1</td><td>29.4</td><td>42.2</td><td>45.8</td><td>66.7</td><td>53.9</td><td>77.7</td>
</tr>
<tr>
<td>BAGEL-7B-MoT</td><td>31.4</td><td>31.0</td><td>34.7</td><td>41.3</td><td>37.0</td><td>63.7</td><td>50.2</td><td>73.1</td>
</tr>
<tr>
<td>SpaceR-7B</td><td>41.5</td><td>27.4</td><td>37.9</td><td>35.8</td><td>34.2</td><td>49.6</td><td>40.5</td><td>66.9</td>
</tr>
<tr>
<td>ViLaSR-7B</td><td>44.6</td><td>30.2</td><td>35.1</td><td>35.7</td><td>38.7</td><td>51.4</td><td>46.6</td><td>67.3</td>
</tr>
<tr>
<td>VST-7B-SFT</td><td>60.6</td><td>32.0</td><td>39.7</td><td>50.5</td><td>39.6</td><td>61.9</td><td>54.6</td><td>73.7</td>
</tr>
<tr>
<td>Cambrian-S-7B</td><td>67.5</td><td>25.8</td><td>39.6</td><td>40.9</td><td>33.0</td><td>37.9</td><td>54.8</td><td>72.8</td>
</tr>
<tr>
<td><strong>SenseNova-SI-1.2-InternVL3-8B</strong></td>
<td><strong>69.6</strong></td>
<td><strong>42.6</strong></td>
<td><strong>89.0</strong></td>
<td><strong>58.8</strong></td>
<td><strong>49.0</strong></td>
<td><strong>69.4</strong></td>
<td><strong>60.1</strong></td>
<td><strong>77.7</strong></td>
</tr>
<tr style="background:#F2F0EF;color:#6b7280;font-weight:600;text-align:center;">
<td colspan="9"><em>Proprietary Models</em></td>
</tr>
<tr style="color:#6b7280;">
<td>Gemini-2.5-pro-2025-06</td><td>53.5</td><td>38.0</td><td>57.6</td><td>46.0</td><td>57.0</td><td>73.5</td><td>59.3</td><td>78.9</td>
</tr>
<tr style="color:#6b7280;">
<td>Grok-4-2025-07-09</td><td>47.9</td><td>37.8</td><td>63.5</td><td>43.2</td><td>47.0</td><td>56.4</td><td>54.9</td><td>75.7</td>
</tr>
<tr style="color:#6b7280;">
<td>GPT-5-2025-08-07</td><td>55.0</td><td>41.8</td><td>56.3</td><td>45.5</td><td>61.8</td><td>68.0</td><td>60.3</td><td>81.6</td>
</tr>
</tbody>
</table>