Gemma3 Multilingual Translator (270M)

A multilingual translation model based on Gemma3-270m, fine-tuned with LoRA and Bias-corrected EMA on 7.4M translation pairs.

Features

  • 6-way translation: Korean, English, Japanese (all directions)
  • High quality: 60% loss reduction (4.03 โ†’ 1.59) with EMA smoothing
  • Easy to use: Simple prompt format with language tags
  • ONNX included: Pre-converted ONNX models for PyTorch-free deployment
  • Multiple precisions: fp32 and q4 quantized ONNX models included

Quick Start

Using Transformers (PyTorch)

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load model
model = AutoModelForCausalLM.from_pretrained(
    "sappho192/gemma3-multilingual-translator-270m",
    torch_dtype=torch.bfloat16,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("sappho192/gemma3-multilingual-translator-270m")

# Translate Korean to English
prompt = "<src:ko><tgt:en>\n์•ˆ๋…•ํ•˜์„ธ์š”, ๋งŒ๋‚˜์„œ ๋ฐ˜๊ฐ‘์Šต๋‹ˆ๋‹ค.\n###\n"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)

with torch.no_grad():
    outputs = model.generate(
        **inputs,
        max_new_tokens=128,
        do_sample=False,
        pad_token_id=tokenizer.pad_token_id
    )

result = tokenizer.decode(outputs[0], skip_special_tokens=True)
translation = result.split("###")[-1].strip()
print(translation)  # "Hello, nice to meet you."

Using ONNX (No PyTorch Required)

from torch_free.inference import TranslatorInferencer

# Load ONNX model (q4 recommended for speed/size)
translator = TranslatorInferencer(
    "sappho192/gemma3-multilingual-translator-270m",
    precision="q4"
)

# Translate
result = translator.translate(
    "์•ˆ๋…•ํ•˜์„ธ์š”, ๋งŒ๋‚˜์„œ ๋ฐ˜๊ฐ‘์Šต๋‹ˆ๋‹ค.",
    src_lang="ko",
    tgt_lang="en"
)
print(result)  # "Hello, nice to meet you."

Translation Format

<src:SOURCE_LANG><tgt:TARGET_LANG>
SOURCE_TEXT
###

Language codes: ko (Korean), en (English), ja (Japanese)

Examples

Direction Input Output
KOโ†’EN ์•ˆ๋…•ํ•˜์„ธ์š”, ๋งŒ๋‚˜์„œ ๋ฐ˜๊ฐ‘์Šต๋‹ˆ๋‹ค. Hello, nice to meet you.
ENโ†’KO Hello, nice to meet you. ์•ˆ๋…•ํ•˜์„ธ์š”, ๋งŒ๋‚˜์„œ ๋ฐ˜๊ฐ‘์Šต๋‹ˆ๋‹ค.
JAโ†’KO ใ“ใ‚“ใซใกใฏใ€ใŠๅ…ƒๆฐ—ใงใ™ใ‹๏ผŸ ์•ˆ๋…•ํ•˜์„ธ์š”, ๊ฑด๊ฐ•ํ•˜์„ธ์š”?
KOโ†’JA ์˜ค๋Š˜ ๋‚ ์”จ๊ฐ€ ์ •๋ง ์ข‹๋„ค์š”. ไปŠๆ—ฅใฎๅคฉๆฐ—ใฏๆœฌๅฝ“ใซใ„ใ„ใงใ™ใญใ€‚

Model Details

Training Specifications

Parameter Value
Base Model google/gemma-3-270m
Training Data 7.4M translation pairs
LoRA Rank 16
LoRA Alpha 32
EMA Decay 0.999
Final Loss 1.59

Model Architecture

Parameter Value
Hidden Size 640
Intermediate Size 2048
Num Layers 18
Num Attention Heads 4
Num KV Heads 1
Head Dim 256
Vocab Size 262,144
Max Position Embeddings 32,768

Included Files

File Description
model.safetensors Merged model weights (LoRA + base)
onnx/model.onnx ONNX model (fp32)
onnx/model_q4.onnx ONNX model (int4 quantized)
torch_free/ PyTorch-free inference code

ONNX Model Sizes

Precision Model Size Avg. Latency
fp32 1.1 GB 0.26s
q4 764 MB 0.17s

Requirements

For PyTorch Inference

  • Python 3.11+
  • PyTorch 2.0+
  • transformers >= 4.55.0

For ONNX Inference (No PyTorch)

  • Python 3.11+
  • numpy >= 1.24.0
  • onnxruntime >= 1.16.0
  • tokenizers >= 0.15.0

License

Apache License 2.0

Citation

If you use this model, please cite:

@misc{gemma3-multilingual-translator,
  author = {Taein Kim},
  title = {Gemma3 Multilingual Translator},
  year = {2025},
  publisher = {Hugging Face},
  url = {https://huggingface.co/sappho192/gemma3-multilingual-translator-270m}
}
Downloads last month
16
Safetensors
Model size
0.3B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for sappho192/gemma3-multilingual-translator-270m

Finetuned
(128)
this model