2and3_apps_30k_v6
This model is a fine-tuned version of Qwen/Qwen2.5-Coder-7B-Instruct on the 2and3_apps_30k_v6 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1605
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- total_eval_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 1
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.1745 | 0.1025 | 100 | 0.1826 |
| 0.1915 | 0.2049 | 200 | 0.1744 |
| 0.1889 | 0.3074 | 300 | 0.1699 |
| 0.203 | 0.4098 | 400 | 0.1674 |
| 0.1834 | 0.5123 | 500 | 0.1656 |
| 0.1807 | 0.6148 | 600 | 0.1633 |
| 0.1853 | 0.7172 | 700 | 0.1625 |
| 0.173 | 0.8197 | 800 | 0.1614 |
| 0.1793 | 0.9221 | 900 | 0.1606 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.6.0+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 5