Efficient Few-Shot Learning Without Prompts
Paper
•
2209.11055
•
Published
•
4
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-mpnet-base-v2 as the Sentence Transformer embedding model. A SetFitHead instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("leavoigt/vulnerability_multilabel_v2")
# Run inference
preds = model("Seek to increase urban resilience by developing master plans for rainwater drainage, improving and extending drainage infrastructure, and implementing flood management systems in vulnerable areas. Adaptive capacity of agro- silvo- pastoral production and promotion of blue economy.")
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 1 | 61.3809 | 164 |
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0002 | 1 | 0.25 | - |
| 0.2084 | 1000 | 0.0461 | 0.1223 |
| 0.4168 | 2000 | 0.0169 | 0.1294 |
| 0.6251 | 3000 | 0.032 | 0.121 |
| 0.8335 | 4000 | 0.023 | 0.1172 |
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}