Qwen3-4B-AI-Review-Detector

This model is a fine-tuned version of unsloth/qwen3-4b-base-unsloth-bnb-4bit designed to detect whether a Korean cosmetics review is Human-Written (HWR) or LLM-Generated (LGR).

It has been trained using TRL and Unsloth for efficient fine-tuning.

Model Details

  • Base Model: unsloth/qwen3-4b-base-unsloth-bnb-4bit
  • Task: Binary Classification (via Text Generation)
    • Class 0: HWR (Human Written Review)
    • Class 1: LGR (LLM Generated Review)
  • Language: Korean
  • Domain: Cosmetics / Beauty
  • Training Method: LoRA (Low-Rank Adaptation)

Quick start

You can use the pipeline from the transformers library to run inference.

from transformers import pipeline

# Load the model
# Replace 'None' with your Hugging Face model ID (e.g., "username/Qwen3-4B-AI-Review-Detector")
model_id = "jedimark/Qwen3-4B-AI-Review-Detector" 
generator = pipeline("text-generation", model=model_id, device_map="auto")

# Example review
review_text = "์ด ์ œํ’ˆ ์ •๋ง ์ข‹์•„์š”! ๋ฐฐ์†ก๋„ ๋น ๋ฅด๊ณ  ํ’ˆ์งˆ๋„ ๋งŒ์กฑํ•ฉ๋‹ˆ๋‹ค."

# Construct the prompt
prompt = f"""๋‹ค์Œ ๋ฆฌ๋ทฐ ํ…์ŠคํŠธ๊ฐ€ ์‚ฌ๋žŒ์ด ์ž‘์„ฑํ•œ ๊ฒƒ์ธ์ง€(Human Written) LLM์ด ์ƒ์„ฑํ•œ ๊ฒƒ์ธ์ง€ ํŒ๋‹จํ•˜์—ฌ ๋ถ„๋ฅ˜ํ•˜์„ธ์š”.
{review_text}

Classify this review into one of the following:
class 0: HWR (Human Written Review)
class 1: LGR (LLM Generated Review)

SOLUTION
The correct answer is: class"""

# Run inference
output = generator(prompt, max_new_tokens=1, return_full_text=False)[0]
print(f"Predicted Class: {output['generated_text']}")
# Output: 0 (Human Written) or 1 (LLM Generated)

Training procedure

This model was trained using SFT (Supervised Fine-Tuning) with the following configuration:

  • Dataset: Custom dataset of Korean cosmetics reviews labeled as Human-Written (0) or LLM-Generated (1).
  • Quantization: 4-bit quantization using bitsandbytes (BnB) for memory efficiency.
  • LoRA Configuration:
    • Rank (r): 16
    • Alpha: 16
    • Target Modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj (All linear layers)
  • Optimization: Trained with Unsloth for faster training and lower memory usage.

Framework versions

  • Unsloth 2024.x
  • PEFT 0.18.0
  • TRL: 0.24.0
  • Transformers: 4.57.2
  • Pytorch: 2.9.0
  • Datasets: 4.3.0
  • Tokenizers: 0.22.1
Downloads last month
96
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support