LearnFinance PPO Model - v2026-02-13-450ba9c43404
Proximal Policy Optimization (PPO) portfolio allocation agent using dual forecasts (LSTM + PatchTST) as features.
Model Details
- Version: v2026-02-13-450ba9c43404
- Model Type: PPO (Proximal Policy Optimization) with dual forecasts
- Training Window: 2011-01-01 to 2026-02-13
- Symbols: 14 stocks
Components
weights.pt- PPO actor-critic network weightsscaler.pkl- PortfolioScaler for state normalizationsymbol_order.json- Ordered list of portfolio symbols
Metrics
- Policy Loss: -0.009968774500661226
- Value Loss: 50317.601953125
- Avg Episode Return: 0.27473973821563236
- Avg Episode Sharpe: 0.20072054963155306
- Eval Sharpe: 2.5078423330733717
- Eval CAGR: 0.6663448611882279
- Eval Max Drawdown: 0.0826743044336452
Usage
from brain_api.storage.ppo import PPOHuggingFaceModelStorage
storage = PPOHuggingFaceModelStorage(repo_id="hajirazin/learnfinance-models-ppo")
artifacts = storage.download_model(version="v2026-02-13-450ba9c43404")
- Downloads last month
- 35