Fine-tuned indoBERT pre-trained model for sarcasm and satire classification

Just check GitHub for full-code and Google Colab: https://github.com/haipradana/indobert-indonesia-sarcastic-satire-classification

How to use this model?

import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification

# Load model
tokenizer = AutoTokenizer.from_pretrained("indobert-indonesia-sarcastic-satire-classification/model")
model = AutoModelForSequenceClassification.from_pretrained("indobert-indonesia-sarcastic-satire-classification/model")

# Predict
def predict(text: str):
    inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True, max_length=512)
    with torch.no_grad():
        outputs = model(**inputs)
    logits = outputs.logits
    prediction = torch.argmax(logits, dim=1).item()
    return 'sarcasm' if prediction == 1 else 'not sarcasm'

# Example
result = predict("Kamu penulis ya? pandai sekali mengarang cerita")
print(result) #output = sarcasm

Or just using the script in the GitHub Repos

cd scripts
python predict.py

Evaluation Results

The model was evaluated on the test set with the following metrics:

Metric Value
Accuracy 0.8378
Precision 0.8405
Recall 0.8286
F1-Score 0.8345

Training History

Epoch Train Loss Val Loss Accuracy Precision F1-Score Recall
1 0.4559 0.3512 0.8409 0.9022 0.8261 0.7618
2 0.2491 0.3924 0.8339 0.7835 0.8459 0.9190
3 0.1198 0.5980 0.8429 0.8188 0.8471 0.8774
4 0.0439 0.9497 0.8444 0.8231 0.8479 0.8742
5 0.0097 0.9962 0.8522 0.8421 0.8529 0.8640
Downloads last month
5
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for haipradana/indobert-indonesia-satire-sarcastic-classification-model

Finetuned
(103)
this model