See axolotl config
axolotl version: 0.12.1
adapter: lora
base_model: bigscience/bloom-560m
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- a14930b6eeb6d1b3_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/
type:
field_instruction: instruct
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: false
hub_model_id: eason668/4b509713-486e-488a-bf91-393179e986f5
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 1500
micro_batch_size: 8
mlflow_experiment_name: /tmp/a14930b6eeb6d1b3_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: null
wandb_mode: offline
wandb_name: 4b509713-486e-488a-bf91-393179e986f5
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 4b509713-486e-488a-bf91-393179e986f5
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null
4b509713-486e-488a-bf91-393179e986f5
This model is a fine-tuned version of bigscience/bloom-560m on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.2940
- Memory/max Mem Active(gib): 13.09
- Memory/max Mem Allocated(gib): 13.09
- Memory/device Mem Reserved(gib): 15.75
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 16
- total_train_batch_size: 1024
- total_eval_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1500
Training results
| Training Loss | Epoch | Step | Validation Loss | Mem Active(gib) | Mem Allocated(gib) | Mem Reserved(gib) |
|---|---|---|---|---|---|---|
| No log | 0 | 0 | 3.1634 | 10.72 | 10.72 | 11.38 |
| 2.5436 | 0.8716 | 188 | 2.5547 | 13.09 | 13.09 | 15.75 |
| 2.4108 | 1.7418 | 376 | 2.4190 | 13.09 | 13.09 | 15.75 |
| 2.3911 | 2.6120 | 564 | 2.3619 | 13.09 | 13.09 | 15.75 |
| 2.3574 | 3.4822 | 752 | 2.3295 | 13.09 | 13.09 | 15.75 |
| 2.3197 | 4.3524 | 940 | 2.3099 | 13.09 | 13.09 | 15.75 |
| 2.2956 | 5.2225 | 1128 | 2.2985 | 13.09 | 13.09 | 15.75 |
| 2.2586 | 6.0927 | 1316 | 2.2940 | 13.09 | 13.09 | 15.75 |
Framework versions
- PEFT 0.17.0
- Transformers 4.55.0
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 34
Model tree for eason668/4b509713-486e-488a-bf91-393179e986f5
Base model
bigscience/bloom-560m