File size: 2,879 Bytes
862756c ef5ac3b 862756c ef5ac3b 862756c ef5ac3b 862756c d90b517 862756c 85dea6f ef5ac3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
license: mit
task_categories:
- feature-extraction
language:
- en
tags:
- code
pretty_name: MNIST Visual Curation
size_categories:
- 10K<n<100K
---
# Curation of the famous MNIST Dataset
The curation was done using qualitative analysis of the dataset, following visualization techniques like **PCA** and **UMAP** and score-based categorization of the samples using metrics like **hardness**, **mistakenness**, or **uniqueness**.
The code of the curation can be found on GitHub:
π https://github.com/Conscht/MNIST_Curation_Repo/tree/main
This curated version of MNIST introduces an additional **IDK (βI Donβt Knowβ)** label for digits that are ambiguous, noisy, or of low quality. It is intended for experiments on robust classification, dataset curation, and handling uncertain or hard-to-classify examples.
---
## π Overview
Compared to the original MNIST dataset, this curated version:
- keeps the original digit classes **0β9**
- adds an **11th class: `IDK`**
- moves visually ambiguous or questionable digits into the `IDK` class
Questionable digits include:
- distorted or spaghetti-like shapes
- digits that are hard even for humans to classify
- strong outliers in the embedding space
- samples often misclassified by the baseline model
---
## π§ How the Curation Was Done
The curation process combined **qualitative inspection** and **quantitative metrics**:
1. Train a **LeNet-5** classifier on the original MNIST digits.
2. Extract **embeddings** from the penultimate layer of the network.
3. Visualize these embeddings with **PCA** and **UMAP** in **FiftyOne** to identify clusters, outliers, and ambiguous regions.
4. Compute several **FiftyOne Brain metrics**:
- `hardness`
- `mistakenness`
- `uniqueness`
- `representativeness`
5. Use these metrics to surface suspicious samples:
- highly mistaken or hard examples
- high-uniqueness outliers
- misclassified samples
6. Inspect these subsets inside the **FiftyOne App** and manually decide which samples should be relabeled as **IDK**.
Example of visualized embedding space:

---
## π Dataset Structure
The dataset is exported in **ImageClassificationDirectoryTree** format:
```text
root/
βββ train/
β βββ 0/
β βββ 1/
β βββ ...
β βββ 9/
β βββ IDK/
βββ test/
βββ 0/
βββ 1/
βββ ...
βββ 9/
βββ IDK/
@article{lecun1998gradient,
title={Gradient-based learning applied to document recognition},
author={LeCun, Yann and Bottou, L{\'e}on and Bengio, Yoshua and Haffner, Patrick},
journal={Proceedings of the IEEE},
volume={86},
number={11},
pages={2278--2324},
year={1998},
publisher={IEEE}
} |