Consscht commited on
Commit
862756c
Β·
verified Β·
1 Parent(s): 85dea6f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -3
README.md CHANGED
@@ -1,7 +1,95 @@
1
  # Curation of the famous MNIST Dataset
2
 
3
- The curation was done using qualitative analysis of the dataset, following visualization techniques like PCA and UMAP
4
- and score based categorization of the samples using metrics like hardness, mistakeness or uniqueness.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- The code of the curation can be found on Github: https://github.com/Conscht/MNIST_Curation_Repo/tree/main
7
 
 
1
  # Curation of the famous MNIST Dataset
2
 
3
+ ---
4
+ annotations_creators:
5
+ - manual
6
+ language:
7
+ - en
8
+ license:
9
+ pretty_name: Curated MNIST (with IDK Class)
10
+ tags:
11
+ - mnist
12
+ - curation
13
+ - idk
14
+ - computer-vision
15
+ - image-classification
16
+ - embeddings
17
+ - fiftyone
18
+ - pca
19
+ - umap
20
+ task_categories:
21
+ - image-classification
22
+ task_ids:
23
+ - multi-class-classification
24
+ size_categories:
25
+ - 10k<n<100k
26
+ ---
27
+
28
+ # Curation of the famous MNIST Dataset
29
+
30
+ The curation was done using qualitative analysis of the dataset, following visualization techniques like **PCA** and **UMAP** and score-based categorization of the samples using metrics like **hardness**, **mistakenness**, or **uniqueness**.
31
+
32
+ The code of the curation can be found on GitHub:
33
+ πŸ‘‰ https://github.com/Conscht/MNIST_Curation_Repo/tree/main
34
+
35
+ This curated version of MNIST introduces an additional **IDK (β€œI Don’t Know”)** label for digits that are ambiguous, noisy, or of low quality. It is intended for experiments on robust classification, dataset curation, and handling uncertain or hard-to-classify examples.
36
+
37
+ ---
38
+
39
+ ## πŸ” Overview
40
+
41
+ Compared to the original MNIST dataset, this curated version:
42
+
43
+ - keeps the original digit classes **0–9**
44
+ - adds an **11th class: `IDK`**
45
+ - moves visually ambiguous or questionable digits into the `IDK` class
46
+
47
+ Questionable digits include:
48
+
49
+ - distorted or spaghetti-like shapes
50
+ - digits that are hard even for humans to classify
51
+ - strong outliers in the embedding space
52
+ - samples often misclassified by the baseline model
53
+
54
+ ---
55
+
56
+ ## 🧠 How the Curation Was Done
57
+
58
+ The curation process combined **qualitative inspection** and **quantitative metrics**:
59
+
60
+ 1. Train a **LeNet-5** classifier on the original MNIST digits.
61
+ 2. Extract **embeddings** from the penultimate layer of the network.
62
+ 3. Visualize these embeddings with **PCA** and **UMAP** in **FiftyOne** to identify clusters, outliers, and ambiguous regions.
63
+ 4. Compute several **FiftyOne Brain metrics**:
64
+ - `hardness`
65
+ - `mistakenness`
66
+ - `uniqueness`
67
+ - `representativeness`
68
+ 5. Use these metrics to surface suspicious samples:
69
+ - highly mistaken or hard examples
70
+ - high-uniqueness outliers
71
+ - misclassified samples
72
+ 6. Inspect these subsets inside the **FiftyOne App** and manually decide which samples should be relabeled as **IDK**.
73
+
74
+ ---
75
+
76
+ ## πŸ“ Dataset Structure
77
+
78
+ The dataset is exported in **ImageClassificationDirectoryTree** format:
79
+
80
+ ```text
81
+ root/
82
+ β”œβ”€β”€ train/
83
+ β”‚ β”œβ”€β”€ 0/
84
+ β”‚ β”œβ”€β”€ 1/
85
+ β”‚ β”œβ”€β”€ ...
86
+ β”‚ β”œβ”€β”€ 9/
87
+ β”‚ └── IDK/
88
+ └── test/
89
+ β”œβ”€β”€ 0/
90
+ β”œβ”€β”€ 1/
91
+ β”œβ”€β”€ ...
92
+ β”œβ”€β”€ 9/
93
+ └── IDK/
94
 
 
95