bradyclarke/Spark-270M-FP16-mlx-nvfp4

This model bradyclarke/Spark-270M-FP16-mlx-nvfp4 was converted to MLX format from TitleOS/Spark-270M-FP16 using mlx-lm version 0.30.2.

Use with mlx

pip install mlx-lm
from mlx_lm import load, generate

model, tokenizer = load("bradyclarke/Spark-270M-FP16-mlx-nvfp4")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True, return_dict=False,
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Downloads last month
13
Safetensors
Model size
67.1M params
Tensor type
U8
·
U32
·
BF16
·
MLX
Hardware compatibility
Log In to add your hardware

4-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for bradyclarke/Spark-270M-FP16-mlx-nvfp4

Quantized
(9)
this model

Dataset used to train bradyclarke/Spark-270M-FP16-mlx-nvfp4