| base_model: jonathandinu/face-parsing | |
| library_name: transformers.js | |
| pipeline_tag: image-segmentation | |
| https://huggingface.co/jonathandinu/face-parsing with ONNX weights to be compatible with Transformers.js. | |
| ## Usage (Transformers.js) | |
| If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using: | |
| ```bash | |
| npm i @huggingface/transformers | |
| ``` | |
| **Example:** Face segmentation with `Xenova/face-parsing`. | |
| ```js | |
| import { pipeline } from '@huggingface/transformers'; | |
| const segmenter = await pipeline('image-segmentation', 'Xenova/face-parsing'); | |
| const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/portrait-of-woman.jpg'; | |
| const output = await segmenter(url); | |
| console.log(output) | |
| // [ | |
| // { | |
| // score: null, | |
| // label: 'background', | |
| // mask: RawImage { ... } | |
| // }, | |
| // { | |
| // score: null, | |
| // label: 'skin.png', | |
| // mask: RawImage { ... } | |
| // }, | |
| // ... | |
| // } | |
| // ] | |
| ``` | |
| You can visualize the outputs with: | |
| ```js | |
| for (const l of output) { | |
| l.mask.save(`${l.label}.png`); | |
| } | |
| ``` | |
|  | |
| --- | |
| Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |