Efficient Few-Shot Learning Without Prompts
Paper
•
2209.11055
•
Published
•
4
This is a SetFit model that can be used for Text Classification. A MultiTaskHead instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("how to run | BlChicken")
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 2 | 11.1286 | 49 |
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0009 | 1 | 0.2817 | - |
| 0.0443 | 50 | 0.3201 | - |
| 0.0887 | 100 | 0.2755 | - |
| 0.1330 | 150 | 0.2357 | - |
| 0.1773 | 200 | 0.2212 | - |
| 0.2216 | 250 | 0.2125 | - |
| 0.2660 | 300 | 0.1982 | - |
| 0.3103 | 350 | 0.1819 | - |
| 0.3546 | 400 | 0.1728 | - |
| 0.3989 | 450 | 0.1686 | - |
| 0.4433 | 500 | 0.1513 | - |
| 0.4876 | 550 | 0.1395 | - |
| 0.5319 | 600 | 0.1312 | - |
| 0.5762 | 650 | 0.1165 | - |
| 0.6206 | 700 | 0.1068 | - |
| 0.6649 | 750 | 0.098 | - |
| 0.7092 | 800 | 0.0899 | - |
| 0.7535 | 850 | 0.0767 | - |
| 0.7979 | 900 | 0.0762 | - |
| 0.8422 | 950 | 0.0724 | - |
| 0.8865 | 1000 | 0.0613 | - |
| 0.9309 | 1050 | 0.0625 | - |
| 0.9752 | 1100 | 0.0539 | - |
| 1.0195 | 1150 | 0.0494 | - |
| 1.0638 | 1200 | 0.046 | - |
| 1.1082 | 1250 | 0.0387 | - |
| 1.1525 | 1300 | 0.0414 | - |
| 1.1968 | 1350 | 0.0324 | - |
| 1.2411 | 1400 | 0.0284 | - |
| 1.2855 | 1450 | 0.0338 | - |
| 1.3298 | 1500 | 0.0277 | - |
| 1.3741 | 1550 | 0.0261 | - |
| 1.4184 | 1600 | 0.0238 | - |
| 1.4628 | 1650 | 0.0241 | - |
| 1.5071 | 1700 | 0.0217 | - |
| 1.5514 | 1750 | 0.019 | - |
| 1.5957 | 1800 | 0.0173 | - |
| 1.6401 | 1850 | 0.0157 | - |
| 1.6844 | 1900 | 0.0145 | - |
| 1.7287 | 1950 | 0.0171 | - |
| 1.7730 | 2000 | 0.0131 | - |
| 1.8174 | 2050 | 0.0148 | - |
| 1.8617 | 2100 | 0.0163 | - |
| 1.9060 | 2150 | 0.0131 | - |
| 1.9504 | 2200 | 0.0087 | - |
| 1.9947 | 2250 | 0.0113 | - |
| 2.0390 | 2300 | 0.008 | - |
| 2.0833 | 2350 | 0.0096 | - |
| 2.1277 | 2400 | 0.0116 | - |
| 2.1720 | 2450 | 0.0088 | - |
| 2.2163 | 2500 | 0.0105 | - |
| 2.2606 | 2550 | 0.0084 | - |
| 2.3050 | 2600 | 0.0074 | - |
| 2.3493 | 2650 | 0.0071 | - |
| 2.3936 | 2700 | 0.0081 | - |
| 2.4379 | 2750 | 0.0064 | - |
| 2.4823 | 2800 | 0.0069 | - |
| 2.5266 | 2850 | 0.0054 | - |
| 2.5709 | 2900 | 0.0081 | - |
| 2.6152 | 2950 | 0.0052 | - |
| 2.6596 | 3000 | 0.008 | - |
| 2.7039 | 3050 | 0.0073 | - |
| 2.7482 | 3100 | 0.0066 | - |
| 2.7926 | 3150 | 0.0054 | - |
| 2.8369 | 3200 | 0.0066 | - |
| 2.8812 | 3250 | 0.0048 | - |
| 2.9255 | 3300 | 0.0063 | - |
| 2.9699 | 3350 | 0.0045 | - |
| 3.0142 | 3400 | 0.0056 | - |
| 3.0585 | 3450 | 0.0031 | - |
| 3.1028 | 3500 | 0.0042 | - |
| 3.1472 | 3550 | 0.0029 | - |
| 3.1915 | 3600 | 0.0048 | - |
| 3.2358 | 3650 | 0.0044 | - |
| 3.2801 | 3700 | 0.0034 | - |
| 3.3245 | 3750 | 0.0041 | - |
| 3.3688 | 3800 | 0.0046 | - |
| 3.4131 | 3850 | 0.0031 | - |
| 3.4574 | 3900 | 0.0033 | - |
| 3.5018 | 3950 | 0.0041 | - |
| 3.5461 | 4000 | 0.0038 | - |
| 3.5904 | 4050 | 0.0028 | - |
| 3.6348 | 4100 | 0.0032 | - |
| 3.6791 | 4150 | 0.0035 | - |
| 3.7234 | 4200 | 0.0025 | - |
| 3.7677 | 4250 | 0.0049 | - |
| 3.8121 | 4300 | 0.0033 | - |
| 3.8564 | 4350 | 0.0028 | - |
| 3.9007 | 4400 | 0.0029 | - |
| 3.9450 | 4450 | 0.0027 | - |
| 3.9894 | 4500 | 0.0032 | - |
| 4.0337 | 4550 | 0.002 | - |
| 4.0780 | 4600 | 0.0023 | - |
| 4.1223 | 4650 | 0.0021 | - |
| 4.1667 | 4700 | 0.0014 | - |
| 4.2110 | 4750 | 0.002 | - |
| 4.2553 | 4800 | 0.0026 | - |
| 4.2996 | 4850 | 0.002 | - |
| 4.3440 | 4900 | 0.0025 | - |
| 4.3883 | 4950 | 0.0019 | - |
| 4.4326 | 5000 | 0.004 | - |
| 4.4770 | 5050 | 0.003 | - |
| 4.5213 | 5100 | 0.0019 | - |
| 4.5656 | 5150 | 0.0019 | - |
| 4.6099 | 5200 | 0.0017 | - |
| 4.6543 | 5250 | 0.0019 | - |
| 4.6986 | 5300 | 0.0024 | - |
| 4.7429 | 5350 | 0.0014 | - |
| 4.7872 | 5400 | 0.002 | - |
| 4.8316 | 5450 | 0.0023 | - |
| 4.8759 | 5500 | 0.0019 | - |
| 4.9202 | 5550 | 0.0035 | - |
| 4.9645 | 5600 | 0.0021 | - |
| 5.0089 | 5650 | 0.0024 | - |
| 5.0532 | 5700 | 0.0015 | - |
| 5.0975 | 5750 | 0.0017 | - |
| 5.1418 | 5800 | 0.0022 | - |
| 5.1862 | 5850 | 0.0015 | - |
| 5.2305 | 5900 | 0.0014 | - |
| 5.2748 | 5950 | 0.0014 | - |
| 5.3191 | 6000 | 0.0016 | - |
| 5.3635 | 6050 | 0.0017 | - |
| 5.4078 | 6100 | 0.0018 | - |
| 5.4521 | 6150 | 0.001 | - |
| 5.4965 | 6200 | 0.0016 | - |
| 5.5408 | 6250 | 0.0023 | - |
| 5.5851 | 6300 | 0.0011 | - |
| 5.6294 | 6350 | 0.0015 | - |
| 5.6738 | 6400 | 0.0026 | - |
| 5.7181 | 6450 | 0.0012 | - |
| 5.7624 | 6500 | 0.0011 | - |
| 5.8067 | 6550 | 0.0013 | - |
| 5.8511 | 6600 | 0.0007 | - |
| 5.8954 | 6650 | 0.0016 | - |
| 5.9397 | 6700 | 0.0022 | - |
| 5.9840 | 6750 | 0.0009 | - |
| 6.0284 | 6800 | 0.0009 | - |
| 6.0727 | 6850 | 0.0014 | - |
| 6.1170 | 6900 | 0.001 | - |
| 6.1613 | 6950 | 0.001 | - |
| 6.2057 | 7000 | 0.0007 | - |
| 6.25 | 7050 | 0.0015 | - |
| 6.2943 | 7100 | 0.0013 | - |
| 6.3387 | 7150 | 0.0011 | - |
| 6.3830 | 7200 | 0.0015 | - |
| 6.4273 | 7250 | 0.0007 | - |
| 6.4716 | 7300 | 0.001 | - |
| 6.5160 | 7350 | 0.0011 | - |
| 6.5603 | 7400 | 0.0012 | - |
| 6.6046 | 7450 | 0.0009 | - |
| 6.6489 | 7500 | 0.0017 | - |
| 6.6933 | 7550 | 0.0005 | - |
| 6.7376 | 7600 | 0.0009 | - |
| 6.7819 | 7650 | 0.0005 | - |
| 6.8262 | 7700 | 0.0012 | - |
| 6.8706 | 7750 | 0.0016 | - |
| 6.9149 | 7800 | 0.0013 | - |
| 6.9592 | 7850 | 0.001 | - |
| 7.0035 | 7900 | 0.0009 | - |
| 7.0479 | 7950 | 0.0011 | - |
| 7.0922 | 8000 | 0.001 | - |
| 7.1365 | 8050 | 0.0006 | - |
| 7.1809 | 8100 | 0.0014 | - |
| 7.2252 | 8150 | 0.0006 | - |
| 7.2695 | 8200 | 0.0011 | - |
| 7.3138 | 8250 | 0.0007 | - |
| 7.3582 | 8300 | 0.0015 | - |
| 7.4025 | 8350 | 0.001 | - |
| 7.4468 | 8400 | 0.0006 | - |
| 7.4911 | 8450 | 0.0011 | - |
| 7.5355 | 8500 | 0.0009 | - |
| 7.5798 | 8550 | 0.0009 | - |
| 7.6241 | 8600 | 0.001 | - |
| 7.6684 | 8650 | 0.0011 | - |
| 7.7128 | 8700 | 0.001 | - |
| 7.7571 | 8750 | 0.0009 | - |
| 7.8014 | 8800 | 0.0012 | - |
| 7.8457 | 8850 | 0.0005 | - |
| 7.8901 | 8900 | 0.0006 | - |
| 7.9344 | 8950 | 0.0006 | - |
| 7.9787 | 9000 | 0.0005 | - |
| 8.0230 | 9050 | 0.0007 | - |
| 8.0674 | 9100 | 0.0005 | - |
| 8.1117 | 9150 | 0.0008 | - |
| 8.1560 | 9200 | 0.0005 | - |
| 8.2004 | 9250 | 0.0004 | - |
| 8.2447 | 9300 | 0.0006 | - |
| 8.2890 | 9350 | 0.0005 | - |
| 8.3333 | 9400 | 0.0009 | - |
| 8.3777 | 9450 | 0.0004 | - |
| 8.4220 | 9500 | 0.0005 | - |
| 8.4663 | 9550 | 0.0011 | - |
| 8.5106 | 9600 | 0.0007 | - |
| 8.5550 | 9650 | 0.0005 | - |
| 8.5993 | 9700 | 0.0011 | - |
| 8.6436 | 9750 | 0.0009 | - |
| 8.6879 | 9800 | 0.0013 | - |
| 8.7323 | 9850 | 0.0006 | - |
| 8.7766 | 9900 | 0.0008 | - |
| 8.8209 | 9950 | 0.0007 | - |
| 8.8652 | 10000 | 0.0007 | - |
| 8.9096 | 10050 | 0.0005 | - |
| 8.9539 | 10100 | 0.0008 | - |
| 8.9982 | 10150 | 0.0008 | - |
| 9.0426 | 10200 | 0.0004 | - |
| 9.0869 | 10250 | 0.0004 | - |
| 9.1312 | 10300 | 0.0009 | - |
| 9.1755 | 10350 | 0.001 | - |
| 9.2199 | 10400 | 0.0007 | - |
| 9.2642 | 10450 | 0.0003 | - |
| 9.3085 | 10500 | 0.0005 | - |
| 9.3528 | 10550 | 0.0004 | - |
| 9.3972 | 10600 | 0.0008 | - |
| 9.4415 | 10650 | 0.0009 | - |
| 9.4858 | 10700 | 0.0005 | - |
| 9.5301 | 10750 | 0.0003 | - |
| 9.5745 | 10800 | 0.0007 | - |
| 9.6188 | 10850 | 0.0007 | - |
| 9.6631 | 10900 | 0.0005 | - |
| 9.7074 | 10950 | 0.0005 | - |
| 9.7518 | 11000 | 0.0006 | - |
| 9.7961 | 11050 | 0.0008 | - |
| 9.8404 | 11100 | 0.0004 | - |
| 9.8848 | 11150 | 0.0009 | - |
| 9.9291 | 11200 | 0.0006 | - |
| 9.9734 | 11250 | 0.0004 | - |
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}