gpt-rope-swiglu
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0001
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 15
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.1967 | 0.1870 | 500 | 0.0657 |
| 0.0081 | 0.3740 | 1000 | 0.0042 |
| 0.0038 | 0.5610 | 1500 | 0.0016 |
| 0.0018 | 0.7479 | 2000 | 0.0011 |
| 0.0011 | 0.9349 | 2500 | 0.0006 |
| 0.0007 | 1.1219 | 3000 | 0.0005 |
| 0.0006 | 1.3089 | 3500 | 0.0005 |
| 0.0004 | 1.4959 | 4000 | 0.0004 |
| 0.0023 | 1.6829 | 4500 | 0.0011 |
| 0.0005 | 1.8699 | 5000 | 0.0005 |
| 0.0002 | 2.0568 | 5500 | 0.0006 |
| 0.0069 | 2.2438 | 6000 | 0.0019 |
| 0.0004 | 2.4308 | 6500 | 0.0004 |
| 0.0003 | 2.6178 | 7000 | 0.0002 |
| 0.0001 | 2.8048 | 7500 | 0.0003 |
| 0.0003 | 2.9918 | 8000 | 0.0004 |
| 0.0001 | 3.1788 | 8500 | 0.0001 |
| 0.0001 | 3.3657 | 9000 | 0.0003 |
| 0.0001 | 3.5527 | 9500 | 0.0003 |
| 0.0 | 3.7397 | 10000 | 0.0001 |
| 0.0051 | 3.9267 | 10500 | 0.0007 |
| 0.0008 | 4.1137 | 11000 | 0.0003 |
| 0.0001 | 4.3007 | 11500 | 0.0003 |
| 0.0 | 4.4877 | 12000 | 0.0002 |
| 0.0 | 4.6746 | 12500 | 0.0002 |
| 0.0 | 4.8616 | 13000 | 0.0002 |
| 0.0 | 5.0486 | 13500 | 0.0002 |
| 0.0 | 5.2356 | 14000 | 0.0002 |
| 0.0 | 5.4226 | 14500 | 0.0002 |
| 0.0 | 5.6096 | 15000 | 0.0002 |
| 0.0 | 5.7966 | 15500 | 0.0002 |
| 0.0 | 5.9835 | 16000 | 0.0001 |
| 0.0 | 6.1705 | 16500 | 0.0001 |
| 0.0 | 6.3575 | 17000 | 0.0001 |
| 0.0 | 6.5445 | 17500 | 0.0001 |
| 0.0 | 6.7315 | 18000 | 0.0001 |
| 0.0 | 6.9185 | 18500 | 0.0001 |
| 0.0 | 7.1055 | 19000 | 0.0001 |
| 0.0 | 7.2924 | 19500 | 0.0001 |
| 0.0 | 7.4794 | 20000 | 0.0001 |
| 0.0 | 7.6664 | 20500 | 0.0001 |
| 0.0 | 7.8534 | 21000 | 0.0001 |
| 0.0 | 8.0404 | 21500 | 0.0001 |
| 0.0 | 8.2274 | 22000 | 0.0001 |
| 0.0 | 8.4144 | 22500 | 0.0001 |
| 0.0 | 8.6013 | 23000 | 0.0001 |
| 0.0 | 8.7883 | 23500 | 0.0001 |
| 0.0 | 8.9753 | 24000 | 0.0001 |
| 0.0 | 9.1623 | 24500 | 0.0001 |
| 0.0 | 9.3493 | 25000 | 0.0001 |
| 0.0 | 9.5363 | 25500 | 0.0001 |
| 0.0 | 9.7233 | 26000 | 0.0001 |
| 0.0 | 9.9102 | 26500 | 0.0001 |
| 0.0 | 10.0972 | 27000 | 0.0001 |
| 0.0 | 10.2842 | 27500 | 0.0001 |
| 0.0 | 10.4712 | 28000 | 0.0001 |
| 0.0 | 10.6582 | 28500 | 0.0001 |
| 0.0 | 10.8452 | 29000 | 0.0001 |
| 0.0 | 11.0322 | 29500 | 0.0001 |
| 0.0 | 11.2191 | 30000 | 0.0001 |
| 0.0 | 11.4061 | 30500 | 0.0001 |
| 0.0 | 11.5931 | 31000 | 0.0001 |
| 0.0 | 11.7801 | 31500 | 0.0001 |
| 0.0 | 11.9671 | 32000 | 0.0001 |
| 0.0 | 12.1541 | 32500 | 0.0001 |
| 0.0 | 12.3411 | 33000 | 0.0001 |
| 0.0 | 12.5280 | 33500 | 0.0001 |
| 0.0 | 12.7150 | 34000 | 0.0001 |
| 0.0 | 12.9020 | 34500 | 0.0001 |
| 0.0 | 13.0890 | 35000 | 0.0001 |
| 0.0 | 13.2760 | 35500 | 0.0001 |
| 0.0 | 13.4630 | 36000 | 0.0001 |
| 0.0 | 13.6500 | 36500 | 0.0001 |
| 0.0 | 13.8369 | 37000 | 0.0001 |
| 0.0 | 14.0239 | 37500 | 0.0001 |
| 0.0 | 14.2109 | 38000 | 0.0001 |
| 0.0 | 14.3979 | 38500 | 0.0001 |
| 0.0 | 14.5849 | 39000 | 0.0001 |
| 0.0 | 14.7719 | 39500 | 0.0001 |
| 0.0 | 14.9589 | 40000 | 0.0001 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support