|
|
--- |
|
|
license: mit |
|
|
base_model: indobenchmark/indobert-base-p2 |
|
|
tags: |
|
|
- generated_from_trainer |
|
|
metrics: |
|
|
- accuracy |
|
|
model-index: |
|
|
- name: aspect_model |
|
|
results: [] |
|
|
--- |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
# aspect_model |
|
|
|
|
|
This model is a fine-tuned version of [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) on an unknown dataset. |
|
|
It achieves the following results on the evaluation set: |
|
|
- Loss: 1.3490 |
|
|
- Accuracy: 0.8084 |
|
|
|
|
|
## Model description |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training and evaluation data |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 2e-05 |
|
|
- train_batch_size: 16 |
|
|
- eval_batch_size: 16 |
|
|
- seed: 42 |
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
|
- lr_scheduler_type: linear |
|
|
- num_epochs: 20 |
|
|
|
|
|
### Training results |
|
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
|
| No log | 1.0 | 72 | 0.6516 | 0.7735 | |
|
|
| No log | 2.0 | 144 | 0.6119 | 0.7909 | |
|
|
| No log | 3.0 | 216 | 0.6152 | 0.8049 | |
|
|
| No log | 4.0 | 288 | 0.7480 | 0.8118 | |
|
|
| No log | 5.0 | 360 | 1.0121 | 0.7770 | |
|
|
| No log | 6.0 | 432 | 1.0780 | 0.7909 | |
|
|
| 0.27 | 7.0 | 504 | 1.1602 | 0.7840 | |
|
|
| 0.27 | 8.0 | 576 | 1.2136 | 0.8014 | |
|
|
| 0.27 | 9.0 | 648 | 1.2490 | 0.8014 | |
|
|
| 0.27 | 10.0 | 720 | 1.3102 | 0.7840 | |
|
|
| 0.27 | 11.0 | 792 | 1.3184 | 0.8049 | |
|
|
| 0.27 | 12.0 | 864 | 1.3255 | 0.8014 | |
|
|
| 0.27 | 13.0 | 936 | 1.3192 | 0.8049 | |
|
|
| 0.0022 | 14.0 | 1008 | 1.3229 | 0.7944 | |
|
|
| 0.0022 | 15.0 | 1080 | 1.3415 | 0.8014 | |
|
|
| 0.0022 | 16.0 | 1152 | 1.3515 | 0.7909 | |
|
|
| 0.0022 | 17.0 | 1224 | 1.3544 | 0.7944 | |
|
|
| 0.0022 | 18.0 | 1296 | 1.3529 | 0.7944 | |
|
|
| 0.0022 | 19.0 | 1368 | 1.3484 | 0.8084 | |
|
|
| 0.0022 | 20.0 | 1440 | 1.3490 | 0.8084 | |
|
|
|
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- Transformers 4.35.2 |
|
|
- Pytorch 2.1.0+cu121 |
|
|
- Datasets 2.15.0 |
|
|
- Tokenizers 0.15.0 |
|
|
|