See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: EleutherAI/pythia-160m
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- c7227ec4853193d0_train_data.json
ds_type: json
field: prompt
path: /workspace/input_data/
split: train
type: completion
ddp_find_unused_parameters: false
debug: null
deepspeed: null
early_stopping_patience: null
ema_decay: 0.995
ema_update_after_step: 200
eval_max_new_tokens: 256
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
gradient_clipping: 0.5
greater_is_better: false
group_by_length: false
hub_model_id: CheapsetZero/c8240d1f-846f-4151-bd2b-8935ac1e50d5
learning_rate: 0.0001
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_nan_inf_filter: true
logging_steps: 1
lora_alpha: 256
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 128
lora_target_linear: true
lr_scheduler: cosine
max_steps: 28560
metric_for_best_model: eval_loss
micro_batch_size: 8
min_lr: 1.0e-05
mlflow_experiment_name: /tmp/c7227ec4853193d0_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
reward_model_sampling_temperature: 0.7
s2_attention: null
sample_packing: false
save_total_limit: 3
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trl:
beta: 0.15
max_completion_length: 1024
num_generations: 16
reward_funcs:
- rewards_e62e81b4-5c89-48ea-9288-01c064fb8710.reward_specific_word_count_normalized
- rewards_e62e81b4-5c89-48ea-9288-01c064fb8710.reward_flesch_kincaid_grade
- rewards_e62e81b4-5c89-48ea-9288-01c064fb8710.reward_long_words
- rewards_e62e81b4-5c89-48ea-9288-01c064fb8710.reward_low_syllables_per_word_normalized
- rewards_e62e81b4-5c89-48ea-9288-01c064fb8710.reward_low_readability
reward_weights:
- 5.0
- 4.501909114541968
- 5.342897361699535
- 5.0
- 4.676309993075206
use_vllm: false
trust_remote_code: true
use_ema: true
use_peft: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: offline
wandb_name: e62e81b4-5c89-48ea-9288-01c064fb8710
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: e62e81b4-5c89-48ea-9288-01c064fb8710
warmup_steps: 2856
weight_decay: 0.01
xformers_attention: null
c8240d1f-846f-4151-bd2b-8935ac1e50d5
This model is a fine-tuned version of EleutherAI/pythia-160m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1796
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2856
- training_steps: 9730
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 14.4886 | 0.0003 | 1 | 6.9197 |
| 3.3482 | 0.2500 | 811 | 1.6444 |
| 4.248 | 0.5001 | 1622 | 1.9848 |
| 4.008 | 0.7501 | 2433 | 1.6788 |
| 4.4315 | 1.0002 | 3244 | 1.7052 |
| 3.8422 | 1.2502 | 4055 | 1.4894 |
| 3.753 | 1.5002 | 4866 | 1.4269 |
| 3.0171 | 1.7503 | 5677 | 1.3359 |
| 2.3566 | 2.0003 | 6488 | 1.2757 |
| 2.7853 | 2.2503 | 7299 | 1.2397 |
| 2.4154 | 2.5004 | 8110 | 1.1983 |
| 2.3362 | 2.7504 | 8921 | 1.1796 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for CheapsetZero/c8240d1f-846f-4151-bd2b-8935ac1e50d5
Base model
EleutherAI/pythia-160m