AbhishekBhavnani's picture
Update README.md
7c06cee verified
metadata
tags:
  - token-classification
  - distilbert
  - named-entity-recognition
license: apache-2.0
datasets: restaurant-data
language:
  - en
model-index:
  - name: DistilBERT for Token Classification
    results:
      - task:
          type: token-classification
          name: Token Classification
        metrics:
          - type: f1
            value: 0.92
            name: F1 Score

DistilBERT for Token Classification

πŸ“ Overview

This model is a fine-tuned version of DistilBERT for token classification on restaurant-related data. It is capable of recognizing various entities such as:

  • Dishes
  • Amenities
  • Ratings
  • Restaurant names
  • Opening hours
  • Locations
  • Prices
  • Cuisine types

🧠 Model Details

  • Architecture: DistilBertForTokenClassification
  • Hidden Size: 768
  • FFN Inner Hidden Size: 3072
  • Attention Heads: 12
  • Layers: 6
  • Max Position Embeddings: 512
  • Dropout: 0.1
  • Tokenizer: DistilBERT Tokenizer
  • Transformers Version: 4.51.3

🏷️ Labels

The model supports the following 17 token classification labels:

ID Label
0 O
1 B-Amenity
2 I-Amenity
3 B-Dish
4 I-Dish
5 B-Rating
6 I-Rating
7 B-Restaurant_Name
8 I-Restaurant_Name
9 B-Hours
10 I-Hours
11 B-Location
12 I-Location
13 B-Price
14 I-Price
15 B-Cuisine
16 I-Cuisine

πŸš€ Usage Example

from transformers import DistilBertTokenizer, DistilBertForTokenClassification

# Load tokenizer and model
tokenizer = DistilBertTokenizer.from_pretrained("AbhishekBhavnani/Restaurant-Token-Classifier")
model = DistilBertForTokenClassification.from_pretrained("AbhishekBhavnani/Restaurant-Token-Classifier")

# Example input
inputs = tokenizer("Find The Best Place To Eat Pizza in Ahmedabad", return_tensors="pt")
outputs = model(**inputs)

# Get predictions
predictions = outputs.logits.argmax(dim=-1)
print(predictions)