--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen3-0.6B-Base tags: - generated_from_trainer datasets: - timarni/MNLP_M2_mcqa_dataset model-index: - name: outputs/base_test_set results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.9.2` ```yaml base_model: Qwen/Qwen3-0.6B-Base # Automatically upload checkpoint and final model to HF # hub_model_id: username/custom_model_name plugins: - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin strict: false chat_template: qwen3 datasets: - path: timarni/MNLP_M2_mcqa_dataset type: alpaca split: train shuffle_merged_datasets: true val_set_size: 0.1 output_dir: ./outputs/base_test_set dataset_prepared_path: last_run_prepared sequence_len: 4096 #2048 sample_packing: true # was true -> need to check if it actually learns on the samples or not (better understand te hyperparam and event. install axolotl to debug) eval_sample_packing: false pad_to_sequence_len: true # train_on_inputs: true # NEW # group_by_length: false NEW? # To be sure that no LORA is done adapter: null lora: false merge_lora: false wandb_project: mnlp_project wandb_entity: tim-arni wandb_watch: wandb_name: base_test_set wandb_log_model: gradient_accumulation_steps: 16 # 2 micro_batch_size: 2 # 1 num_epochs: 3 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.00005 # 0.00005 # cosine_min_lr_ratio: 0.1 warmup_ratio: 0.05 weight_decay: 0.01 bf16: auto tf32: true gradient_checkpointing: offload gradient_checkpointing_kwargs: use_reentrant: false resume_from_checkpoint: logging_steps: 1 gradient_clipping: 1.0 # or max_grad_norm? flash_attention: true evals_per_epoch: 4 saves_per_epoch: 2 save_total_limit: 20 special_tokens: ```

# outputs/base_test_set This model is a fine-tuned version of [Qwen/Qwen3-0.6B-Base](https://huggingface.co/Qwen/Qwen3-0.6B-Base) on the timarni/MNLP_M2_mcqa_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.1689 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4926 | 0.6957 | 1 | 0.2934 | | 0.197 | 1.0 | 2 | 0.1959 | | 0.127 | 1.6957 | 3 | 0.1689 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.5.1+cu121 - Datasets 3.5.1 - Tokenizers 0.21.1