Spaces:
Sleeping
Sleeping
| import torch | |
| from modules import sampler_hijack, shared | |
| from modules.text_generation import generate_reply | |
| global_scores = None | |
| def get_next_logits(prompt, state, use_samplers, previous): | |
| if use_samplers: | |
| state['max_new_tokens'] = 1 | |
| state['auto_max_new_tokens'] = False | |
| for _ in generate_reply(prompt, state): | |
| pass | |
| scores = sampler_hijack.global_scores[-1] | |
| else: | |
| tokens = shared.tokenizer.encode(prompt, return_tensors='pt').cuda() | |
| output = shared.model(input_ids=tokens) | |
| scores = output['logits'][-1][-1] | |
| probs = torch.softmax(scores, dim=-1, dtype=torch.float) | |
| topk_values, topk_indices = torch.topk(probs, k=25, largest=True, sorted=True) | |
| topk_values = [f"{float(i):.5f}" for i in topk_values] | |
| tokens = [shared.tokenizer.decode(i) for i in topk_indices] | |
| output = '' | |
| for row in list(zip(topk_values, tokens)): | |
| output += f"{row[0]} - {row[1]}\n" | |
| return output, previous | |