Spaces:
Sleeping
Sleeping
first commit
Browse files- app.py +212 -53
- infer.py +150 -0
- install_cuda.sh +7 -0
- install_env.sh +9 -0
- retreival_launch.sh +11 -0
- retrieval_server.py +390 -0
app.py
CHANGED
|
@@ -1,70 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
def respond(
|
| 6 |
message,
|
| 7 |
history: list[dict[str, str]],
|
| 8 |
-
system_message,
|
| 9 |
max_tokens,
|
| 10 |
temperature,
|
| 11 |
top_p,
|
| 12 |
-
hf_token: gr.OAuthToken,
|
| 13 |
):
|
| 14 |
"""
|
| 15 |
-
|
|
|
|
| 16 |
"""
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
with gr.Blocks() as demo:
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
if __name__ == "__main__":
|
| 70 |
-
demo.launch()
|
|
|
|
| 1 |
+
import transformers
|
| 2 |
+
import torch
|
| 3 |
+
import requests
|
| 4 |
+
import re
|
| 5 |
import gradio as gr
|
| 6 |
+
from threading import Thread
|
| 7 |
|
| 8 |
+
# --- Configuration --------------------------------------------------
|
| 9 |
+
|
| 10 |
+
# 1. DEFINE YOUR MODEL
|
| 11 |
+
model_id = "yrshi/AutoRefine-Qwen2.5-3B-Base"
|
| 12 |
+
|
| 13 |
+
# 2. !!! CRITICAL: UPDATE THIS URL !!!
|
| 14 |
+
# Your local 'http://127.0.0.1:8000/retrieve' will NOT work on Hugging Face.
|
| 15 |
+
# You must deploy your retrieval service and provide its public URL here.
|
| 16 |
+
RETRIEVER_URL = "http://127.0.0.1:8000/retrieve" # <-- UPDATE ME
|
| 17 |
+
|
| 18 |
+
# 3. MODEL & SEARCH CONSTANTS
|
| 19 |
+
curr_eos = [151645, 151643] # for Qwen2.5 series models
|
| 20 |
+
curr_search_template = '\n\n{output_text}<documents>{search_results}</documents>\n\n'
|
| 21 |
+
target_sequences = ["</search>", " </search>", "</search>\n", " </search>\n", "</search>\n\n", " </search>\n\n"]
|
| 22 |
+
|
| 23 |
+
# --- Global Model & Tokenizer Loading -------------------------------
|
| 24 |
+
# This happens once when the Space starts.
|
| 25 |
+
# Ensure your Space has a GPU assigned (e.g., T4, A10G).
|
| 26 |
+
|
| 27 |
+
print("Loading model and tokenizer...")
|
| 28 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 29 |
+
|
| 30 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
|
| 31 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
| 32 |
+
model_id,
|
| 33 |
+
torch_dtype=torch.bfloat16,
|
| 34 |
+
device_map="auto"
|
| 35 |
+
)
|
| 36 |
+
print("Model and tokenizer loaded successfully.")
|
| 37 |
+
|
| 38 |
+
# --- Custom Stopping Criteria Class ---------------------------------
|
| 39 |
+
|
| 40 |
+
class StopOnSequence(transformers.StoppingCriteria):
|
| 41 |
+
def __init__(self, target_sequences, tokenizer):
|
| 42 |
+
self.target_ids = [tokenizer.encode(target_sequence, add_special_tokens=False) for target_sequence in target_sequences]
|
| 43 |
+
self.target_lengths = [len(target_id) for target_id in self.target_ids]
|
| 44 |
+
self._tokenizer = tokenizer
|
| 45 |
+
|
| 46 |
+
def __call__(self, input_ids, scores, **kwargs):
|
| 47 |
+
targets = [torch.as_tensor(target_id, device=input_ids.device) for target_id in self.target_ids]
|
| 48 |
+
if input_ids.shape[1] < min(self.target_lengths):
|
| 49 |
+
return False
|
| 50 |
+
for i, target in enumerate(targets):
|
| 51 |
+
if torch.equal(input_ids[0, -self.target_lengths[i]:], target):
|
| 52 |
+
return True
|
| 53 |
+
return False
|
| 54 |
+
|
| 55 |
+
# Initialize stopping criteria globally
|
| 56 |
+
stopping_criteria = transformers.StoppingCriteriaList([StopOnSequence(target_sequences, tokenizer)])
|
| 57 |
+
|
| 58 |
+
# --- Helper Functions (Search & Parse) ------------------------------
|
| 59 |
+
|
| 60 |
+
def get_query(text):
|
| 61 |
+
pattern = re.compile(r"<search>(.*?)</search>", re.DOTALL)
|
| 62 |
+
matches = pattern.findall(text)
|
| 63 |
+
return matches[-1] if matches else None
|
| 64 |
+
|
| 65 |
+
def search(query: str):
|
| 66 |
+
"""
|
| 67 |
+
Calls your deployed retriever service.
|
| 68 |
+
"""
|
| 69 |
+
payload = {"queries": [query], "topk": 3, "return_scores": True}
|
| 70 |
+
|
| 71 |
+
if RETRIEVER_URL == "http://127.0.0.1:8000/retrieve":
|
| 72 |
+
print("WARNING: Using default local retriever URL. This will likely fail.")
|
| 73 |
+
print("Please update RETRIEVER_URL in app.py to your deployed service.")
|
| 74 |
+
|
| 75 |
+
try:
|
| 76 |
+
response = requests.post(RETRIEVER_URL, json=payload, timeout=10)
|
| 77 |
+
response.raise_for_status() # Raise an error for bad responses
|
| 78 |
+
results = response.json()['result']
|
| 79 |
+
|
| 80 |
+
format_reference = ''
|
| 81 |
+
for idx, doc_item in enumerate(results[0]):
|
| 82 |
+
content = doc_item['document']['contents']
|
| 83 |
+
title = content.split("\n")[0]
|
| 84 |
+
text = "\n".join(content.split("\n")[1:])
|
| 85 |
+
format_reference += f"Doc {idx+1}(Title: {title}) {text}\n"
|
| 86 |
+
return format_reference
|
| 87 |
+
|
| 88 |
+
except requests.exceptions.RequestException as e:
|
| 89 |
+
print(f"Error calling retriever: {e}")
|
| 90 |
+
return f"Error: Could not retrieve search results for query: {query}"
|
| 91 |
+
except (KeyError, IndexError):
|
| 92 |
+
print("Error parsing retriever response")
|
| 93 |
+
return "Error: Malformed response from retriever."
|
| 94 |
+
|
| 95 |
+
# --- Main Gradio 'respond' Function ---------------------------------
|
| 96 |
|
| 97 |
def respond(
|
| 98 |
message,
|
| 99 |
history: list[dict[str, str]],
|
| 100 |
+
system_message, # This is now our base prompt
|
| 101 |
max_tokens,
|
| 102 |
temperature,
|
| 103 |
top_p,
|
| 104 |
+
hf_token: gr.OAuthToken = None, # Not used here, but in template
|
| 105 |
):
|
| 106 |
"""
|
| 107 |
+
This function implements your local multi-turn search logic as a
|
| 108 |
+
streaming generator for the Gradio interface.
|
| 109 |
"""
|
| 110 |
+
|
| 111 |
+
question = message.strip()
|
| 112 |
+
|
| 113 |
+
# Use the system_message from the UI as the base prompt
|
| 114 |
+
# Or, if empty, use your default.
|
| 115 |
+
if not system_message:
|
| 116 |
+
system_message = """You are a helpful assistant excel at answering questions with multi-turn search engine calling. \
|
| 117 |
+
To answer questions, you must first reason through the available information using <think> and </think>. \
|
| 118 |
+
If you identify missing knowledge, you may issue a search request using <search> query </search> at any time. The retrieval system will provide you with the three most relevant documents enclosed in <documents> and </documents>. \
|
| 119 |
+
After each search, you need to summarize and refine the existing documents in <refine> and </refine>. \
|
| 120 |
+
You may send multiple search requests if needed. \
|
| 121 |
+
Once you have sufficient information, provide a concise final answer using <answer> and </answer>. For example, <answer> Donald Trump </answer>."""
|
| 122 |
+
|
| 123 |
+
prompt = f"{system_message} Question: {question}\n"
|
| 124 |
+
|
| 125 |
+
if tokenizer.chat_template:
|
| 126 |
+
# Apply chat template if it exists
|
| 127 |
+
# Note: Your logic builds the prompt manually, but this ensures
|
| 128 |
+
# correct special tokens if the model needs them.
|
| 129 |
+
chat_prompt = [{"role": "user", "content": prompt}]
|
| 130 |
+
prompt = tokenizer.apply_chat_template(chat_prompt, add_generation_prompt=True, tokenize=False)
|
| 131 |
+
|
| 132 |
+
# This string will accumulate the full agent trajectory
|
| 133 |
+
full_response_trajectory = ""
|
| 134 |
+
|
| 135 |
+
while True:
|
| 136 |
+
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
|
| 137 |
+
attention_mask = torch.ones_like(input_ids)
|
| 138 |
+
|
| 139 |
+
# Check for context overflow
|
| 140 |
+
if input_ids.shape[1] > model.config.max_position_embeddings - max_tokens:
|
| 141 |
+
print("Context limit reached.")
|
| 142 |
+
full_response_trajectory += "\n\n[Error: Context limit reached. Aborting.]"
|
| 143 |
+
yield full_response_trajectory
|
| 144 |
+
break
|
| 145 |
+
|
| 146 |
+
# Generate text with the stopping criteria
|
| 147 |
+
outputs = model.generate(
|
| 148 |
+
input_ids,
|
| 149 |
+
attention_mask=attention_mask,
|
| 150 |
+
max_new_tokens=max_tokens,
|
| 151 |
+
stopping_criteria=stopping_criteria,
|
| 152 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 153 |
+
do_sample=True,
|
| 154 |
+
temperature=temperature,
|
| 155 |
+
top_p=top_p
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
# Decode the *newly* generated tokens
|
| 159 |
+
generated_token_ids = outputs[0][input_ids.shape[1]:]
|
| 160 |
+
output_text = tokenizer.decode(generated_token_ids, skip_special_tokens=True)
|
| 161 |
+
|
| 162 |
+
# Check if generation ended with an EOS token
|
| 163 |
+
if outputs[0][-1].item() in curr_eos:
|
| 164 |
+
full_response_trajectory += output_text
|
| 165 |
+
yield full_response_trajectory # Yield the final text
|
| 166 |
+
break # Exit the loop
|
| 167 |
+
|
| 168 |
+
# --- Generation stopped at </search> ---
|
| 169 |
+
|
| 170 |
+
# Get the full text (prompt + new generation) to parse the *last* query
|
| 171 |
+
full_generation_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 172 |
+
query_text = get_query(full_generation_text)
|
| 173 |
+
|
| 174 |
+
if query_text:
|
| 175 |
+
search_results = search(query_text)
|
| 176 |
+
else:
|
| 177 |
+
search_results = 'Error: Stop token found but no <search> query was parsed.'
|
| 178 |
+
|
| 179 |
+
# Construct the text to append to the prompt
|
| 180 |
+
search_text = curr_search_template.format(
|
| 181 |
+
output_text=output_text,
|
| 182 |
+
search_results=search_results
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
# Append to the prompt for the next loop
|
| 186 |
+
prompt += search_text
|
| 187 |
+
|
| 188 |
+
# Append to the trajectory string and yield to the UI
|
| 189 |
+
full_response_trajectory += search_text
|
| 190 |
+
yield full_response_trajectory
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
# --- Gradio UI (Example) -------------------------------------------
|
| 194 |
+
# This part is just to make the file runnable.
|
| 195 |
+
# You can customize your Gradio UI as needed.
|
| 196 |
|
| 197 |
with gr.Blocks() as demo:
|
| 198 |
+
gr.Markdown("# Multi-Turn Search Agent")
|
| 199 |
+
gr.Markdown(f"Running model: `{model_id}`")
|
| 200 |
+
|
| 201 |
+
with gr.Accordion("Prompt & Parameters"):
|
| 202 |
+
system_message = gr.Textbox(
|
| 203 |
+
label="System Message",
|
| 204 |
+
value="""You are a helpful assistant... (full prompt from code)""",
|
| 205 |
+
lines=10
|
| 206 |
+
)
|
| 207 |
+
max_tokens = gr.Slider(50, 2048, value=1024, label="Max New Tokens")
|
| 208 |
+
temperature = gr.Slider(0.1, 1.0, value=0.7, label="Temperature")
|
| 209 |
+
top_p = gr.Slider(0.1, 1.0, value=1.0, label="Top-p")
|
| 210 |
+
|
| 211 |
+
chatbot = gr.Chatbot(label="Agent Trajectory")
|
| 212 |
+
msg = gr.Textbox(label="Your Question")
|
| 213 |
+
|
| 214 |
+
def user_turn(user_message, history):
|
| 215 |
+
return "", history + [[user_message, None]]
|
| 216 |
|
| 217 |
+
msg.submit(
|
| 218 |
+
user_turn,
|
| 219 |
+
[msg, chatbot],
|
| 220 |
+
[msg, chatbot],
|
| 221 |
+
queue=False
|
| 222 |
+
).then(
|
| 223 |
+
respond,
|
| 224 |
+
[msg, chatbot, system_message, max_tokens, temperature, top_p],
|
| 225 |
+
chatbot
|
| 226 |
+
)
|
| 227 |
|
| 228 |
if __name__ == "__main__":
|
| 229 |
+
demo.queue().launch(debug=True)
|
infer.py
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import transformers
|
| 2 |
+
import torch
|
| 3 |
+
import requests
|
| 4 |
+
import re
|
| 5 |
+
|
| 6 |
+
question_list = [
|
| 7 |
+
"Who was born first out of Cameron Mitchell (Singer) and Léopold De Saussure?", # Ground Truth: "Léopold De Saussure"
|
| 8 |
+
"The Clavivox was invented by an American composer who was born Harry Warnow in what year?", # Ground Truth: "1908"
|
| 9 |
+
"Which movie did Disney produce first, The Many Adventures of Winnie the Pooh or Ride a Wild Pony?", # Ground Truth: "Ride a Wild Pony"
|
| 10 |
+
"Who is the sibling of the author of Kapalkundala?", # Ground Truth: "Sanjib Chandra" or "Sanjib Chandra Chattopadhyay"
|
| 11 |
+
]
|
| 12 |
+
|
| 13 |
+
# Model ID and device setup
|
| 14 |
+
model_id = "yrshi/AutoRefine-Qwen2.5-3B-Base"
|
| 15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 16 |
+
|
| 17 |
+
curr_eos = [151645, 151643] # for Qwen2.5 series models
|
| 18 |
+
curr_search_template = '{output_text}\n\n<documents>{search_results}</documents>\n\n'
|
| 19 |
+
|
| 20 |
+
# Initialize the tokenizer and model
|
| 21 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
|
| 22 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
|
| 23 |
+
|
| 24 |
+
# Define the custom stopping criterion
|
| 25 |
+
class StopOnSequence(transformers.StoppingCriteria):
|
| 26 |
+
def __init__(self, target_sequences, tokenizer):
|
| 27 |
+
# Encode the string so we have the exact token-IDs pattern
|
| 28 |
+
self.target_ids = [tokenizer.encode(target_sequence, add_special_tokens=False) for target_sequence in target_sequences]
|
| 29 |
+
self.target_lengths = [len(target_id) for target_id in self.target_ids]
|
| 30 |
+
self._tokenizer = tokenizer
|
| 31 |
+
|
| 32 |
+
def __call__(self, input_ids, scores, **kwargs):
|
| 33 |
+
# Make sure the target IDs are on the same device
|
| 34 |
+
targets = [torch.as_tensor(target_id, device=input_ids.device) for target_id in self.target_ids]
|
| 35 |
+
|
| 36 |
+
if input_ids.shape[1] < min(self.target_lengths):
|
| 37 |
+
return False
|
| 38 |
+
|
| 39 |
+
# Compare the tail of input_ids with our target_ids
|
| 40 |
+
for i, target in enumerate(targets):
|
| 41 |
+
if torch.equal(input_ids[0, -self.target_lengths[i]:], target):
|
| 42 |
+
return True
|
| 43 |
+
|
| 44 |
+
return False
|
| 45 |
+
|
| 46 |
+
def get_query(text):
|
| 47 |
+
import re
|
| 48 |
+
pattern = re.compile(r"<search>(.*?)</search>", re.DOTALL)
|
| 49 |
+
matches = pattern.findall(text)
|
| 50 |
+
if matches:
|
| 51 |
+
return matches[-1]
|
| 52 |
+
else:
|
| 53 |
+
return None
|
| 54 |
+
|
| 55 |
+
def search(query: str):
|
| 56 |
+
payload = {
|
| 57 |
+
"queries": [query],
|
| 58 |
+
"topk": 3,
|
| 59 |
+
"return_scores": True
|
| 60 |
+
}
|
| 61 |
+
results = requests.post("http://127.0.0.1:8000/retrieve", json=payload).json()['result']
|
| 62 |
+
|
| 63 |
+
def _passages2string(retrieval_result):
|
| 64 |
+
format_reference = ''
|
| 65 |
+
for idx, doc_item in enumerate(retrieval_result):
|
| 66 |
+
|
| 67 |
+
content = doc_item['document']['contents']
|
| 68 |
+
title = content.split("\n")[0]
|
| 69 |
+
text = "\n".join(content.split("\n")[1:])
|
| 70 |
+
format_reference += f"Doc {idx+1}(Title: {title}) {text}\n"
|
| 71 |
+
return format_reference
|
| 72 |
+
|
| 73 |
+
return _passages2string(results[0])
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
# Initialize the stopping criteria
|
| 77 |
+
target_sequences = ["</search>", " </search>", "</search>\n", " </search>\n", "</search>\n\n", " </search>\n\n"]
|
| 78 |
+
stopping_criteria = transformers.StoppingCriteriaList([StopOnSequence(target_sequences, tokenizer)])
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def run_search(question):
|
| 82 |
+
question = question.strip()
|
| 83 |
+
cnt = 0
|
| 84 |
+
trajectory = []
|
| 85 |
+
|
| 86 |
+
# Prepare the message
|
| 87 |
+
prompt = f"""You are a helpful assistant excel at answering questions with multi-turn search engine calling. \
|
| 88 |
+
To answer questions, you must first reason through the available information using <think> and </think>. \
|
| 89 |
+
If you identify missing knowledge, you may issue a search request using <search> query </search> at any time. The retrieval system will provide you with the three most relevant documents enclosed in <documents> and </documents>. \
|
| 90 |
+
After each search, you need to summarize and refine the existing documents in <refine> and </refine>. \
|
| 91 |
+
You may send multiple search requests if needed. \
|
| 92 |
+
Once you have sufficient information, provide a concise final answer using <answer> and </answer>. For example, <answer> Donald Trump </answer>. Question: {question}\n"""
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
if tokenizer.chat_template:
|
| 96 |
+
prompt = tokenizer.apply_chat_template([{"role": "user", "content": prompt}], add_generation_prompt=True, tokenize=False)
|
| 97 |
+
|
| 98 |
+
print(prompt)
|
| 99 |
+
# Encode the chat-formatted prompt and move it to the correct device
|
| 100 |
+
while True:
|
| 101 |
+
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
|
| 102 |
+
attention_mask = torch.ones_like(input_ids)
|
| 103 |
+
|
| 104 |
+
# Generate text with the stopping criteria
|
| 105 |
+
outputs = model.generate(
|
| 106 |
+
input_ids,
|
| 107 |
+
attention_mask=attention_mask,
|
| 108 |
+
max_new_tokens=1024,
|
| 109 |
+
stopping_criteria=stopping_criteria,
|
| 110 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 111 |
+
do_sample=True,
|
| 112 |
+
temperature=0.7
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
if outputs[0][-1].item() in curr_eos:
|
| 116 |
+
generated_tokens = outputs[0][input_ids.shape[1]:]
|
| 117 |
+
output_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
| 118 |
+
trajectory.append(output_text)
|
| 119 |
+
print(output_text)
|
| 120 |
+
break
|
| 121 |
+
|
| 122 |
+
generated_tokens = outputs[0][input_ids.shape[1]:]
|
| 123 |
+
output_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
| 124 |
+
|
| 125 |
+
query_text = get_query(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 126 |
+
if query_text:
|
| 127 |
+
search_results = search(query_text)
|
| 128 |
+
else:
|
| 129 |
+
search_results = ''
|
| 130 |
+
|
| 131 |
+
search_text = curr_search_template.format(output_text=output_text.strip(), search_results=search_results.strip())
|
| 132 |
+
prompt += search_text
|
| 133 |
+
cnt += 1
|
| 134 |
+
print(search_text)
|
| 135 |
+
trajectory.append(search_text)
|
| 136 |
+
print(f"Total iterations: {cnt}")
|
| 137 |
+
answer_pattern = re.compile(r"<answer>(.*?)</answer>", re.DOTALL)
|
| 138 |
+
answer_match = answer_pattern.search(trajectory[-1])
|
| 139 |
+
if answer_match:
|
| 140 |
+
final_answer = answer_match.group(1).strip()
|
| 141 |
+
print(f"Final answer found: {final_answer}")
|
| 142 |
+
else:
|
| 143 |
+
print("No final answer found in the output.")
|
| 144 |
+
final_answer = "No final answer found."
|
| 145 |
+
return ''.join([text for text in trajectory]), final_answer
|
| 146 |
+
|
| 147 |
+
if __name__ == "__main__":
|
| 148 |
+
output_text, final_answer = run_search(question_list[0])
|
| 149 |
+
print(f"Output trajectory: {output_text}")
|
| 150 |
+
print(f"Final answer: {final_answer}")
|
install_cuda.sh
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
mkdir -p ~/miniconda3
|
| 2 |
+
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
|
| 3 |
+
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
|
| 4 |
+
rm ~/miniconda3/miniconda.sh
|
| 5 |
+
|
| 6 |
+
source ~/miniconda3/bin/activate
|
| 7 |
+
conda init --all
|
install_env.sh
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
conda create -n faiss_env python=3.10
|
| 2 |
+
conda activate faiss_env
|
| 3 |
+
|
| 4 |
+
conda install pytorch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 pytorch-cuda=12.1 -c pytorch -c nvidia
|
| 5 |
+
pip install transformers datasets pyserini
|
| 6 |
+
|
| 7 |
+
conda install -c pytorch -c nvidia faiss-gpu=1.8.0
|
| 8 |
+
|
| 9 |
+
pip install uvicorn fastapi
|
retreival_launch.sh
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
file_path=./data
|
| 3 |
+
index_file=$file_path/e5_Flat.index
|
| 4 |
+
corpus_file=$file_path/wiki-18.jsonl
|
| 5 |
+
retriever=intfloat/e5-base-v2
|
| 6 |
+
|
| 7 |
+
export CUDA_VISIBLE_DEVICES="1,3"
|
| 8 |
+
python search_r1/search/retrieval_server.py --index_path $index_file \
|
| 9 |
+
--corpus_path $corpus_file \
|
| 10 |
+
--topk 3 \
|
| 11 |
+
--retriever_model $retriever
|
retrieval_server.py
ADDED
|
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
import warnings
|
| 4 |
+
from typing import List, Dict, Optional
|
| 5 |
+
import argparse
|
| 6 |
+
|
| 7 |
+
import faiss
|
| 8 |
+
import torch
|
| 9 |
+
import numpy as np
|
| 10 |
+
from transformers import AutoConfig, AutoTokenizer, AutoModel
|
| 11 |
+
from tqdm import tqdm
|
| 12 |
+
import datasets
|
| 13 |
+
|
| 14 |
+
import uvicorn
|
| 15 |
+
from fastapi import FastAPI
|
| 16 |
+
from pydantic import BaseModel
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
parser = argparse.ArgumentParser(description="Launch the local faiss retriever.")
|
| 20 |
+
parser.add_argument("--index_path", type=str, help="Corpus indexing file.")
|
| 21 |
+
parser.add_argument("--corpus_path", type=str, help="Local corpus file.")
|
| 22 |
+
parser.add_argument("--topk", type=int, default=3, help="Number of retrieved passages for one query.")
|
| 23 |
+
parser.add_argument("--retriever_model", type=str, default="intfloat/e5-base-v2", help="Name of the retriever model.")
|
| 24 |
+
|
| 25 |
+
args = parser.parse_args()
|
| 26 |
+
|
| 27 |
+
def load_corpus(corpus_path: str):
|
| 28 |
+
corpus = datasets.load_dataset(
|
| 29 |
+
'json',
|
| 30 |
+
data_files=corpus_path,
|
| 31 |
+
split="train",
|
| 32 |
+
num_proc=4
|
| 33 |
+
)
|
| 34 |
+
return corpus
|
| 35 |
+
|
| 36 |
+
def read_jsonl(file_path):
|
| 37 |
+
data = []
|
| 38 |
+
with open(file_path, "r") as f:
|
| 39 |
+
for line in f:
|
| 40 |
+
data.append(json.loads(line))
|
| 41 |
+
return data
|
| 42 |
+
|
| 43 |
+
def load_docs(corpus, doc_idxs):
|
| 44 |
+
results = [corpus[int(idx)] for idx in doc_idxs]
|
| 45 |
+
return results
|
| 46 |
+
|
| 47 |
+
def load_model(model_path: str, use_fp16: bool = False):
|
| 48 |
+
model_config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
| 49 |
+
model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
|
| 50 |
+
model.eval()
|
| 51 |
+
model.cuda()
|
| 52 |
+
if use_fp16:
|
| 53 |
+
model = model.half()
|
| 54 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, trust_remote_code=True)
|
| 55 |
+
return model, tokenizer
|
| 56 |
+
|
| 57 |
+
def pooling(
|
| 58 |
+
pooler_output,
|
| 59 |
+
last_hidden_state,
|
| 60 |
+
attention_mask = None,
|
| 61 |
+
pooling_method = "mean"
|
| 62 |
+
):
|
| 63 |
+
if pooling_method == "mean":
|
| 64 |
+
last_hidden = last_hidden_state.masked_fill(~attention_mask[..., None].bool(), 0.0)
|
| 65 |
+
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
|
| 66 |
+
elif pooling_method == "cls":
|
| 67 |
+
return last_hidden_state[:, 0]
|
| 68 |
+
elif pooling_method == "pooler":
|
| 69 |
+
return pooler_output
|
| 70 |
+
else:
|
| 71 |
+
raise NotImplementedError("Pooling method not implemented!")
|
| 72 |
+
|
| 73 |
+
class Encoder:
|
| 74 |
+
def __init__(self, model_name, model_path, pooling_method, max_length, use_fp16):
|
| 75 |
+
self.model_name = model_name
|
| 76 |
+
self.model_path = model_path
|
| 77 |
+
self.pooling_method = pooling_method
|
| 78 |
+
self.max_length = max_length
|
| 79 |
+
self.use_fp16 = use_fp16
|
| 80 |
+
|
| 81 |
+
self.model, self.tokenizer = load_model(model_path=model_path, use_fp16=use_fp16)
|
| 82 |
+
self.model.eval()
|
| 83 |
+
|
| 84 |
+
@torch.no_grad()
|
| 85 |
+
def encode(self, query_list: List[str], is_query=True) -> np.ndarray:
|
| 86 |
+
# processing query for different encoders
|
| 87 |
+
if isinstance(query_list, str):
|
| 88 |
+
query_list = [query_list]
|
| 89 |
+
|
| 90 |
+
if "e5" in self.model_name.lower():
|
| 91 |
+
if is_query:
|
| 92 |
+
query_list = [f"query: {query}" for query in query_list]
|
| 93 |
+
else:
|
| 94 |
+
query_list = [f"passage: {query}" for query in query_list]
|
| 95 |
+
|
| 96 |
+
if "bge" in self.model_name.lower():
|
| 97 |
+
if is_query:
|
| 98 |
+
query_list = [f"Represent this sentence for searching relevant passages: {query}" for query in query_list]
|
| 99 |
+
|
| 100 |
+
inputs = self.tokenizer(query_list,
|
| 101 |
+
max_length=self.max_length,
|
| 102 |
+
padding=True,
|
| 103 |
+
truncation=True,
|
| 104 |
+
return_tensors="pt"
|
| 105 |
+
)
|
| 106 |
+
inputs = {k: v.cuda() for k, v in inputs.items()}
|
| 107 |
+
|
| 108 |
+
if "T5" in type(self.model).__name__:
|
| 109 |
+
# T5-based retrieval model
|
| 110 |
+
decoder_input_ids = torch.zeros(
|
| 111 |
+
(inputs['input_ids'].shape[0], 1), dtype=torch.long
|
| 112 |
+
).to(inputs['input_ids'].device)
|
| 113 |
+
output = self.model(
|
| 114 |
+
**inputs, decoder_input_ids=decoder_input_ids, return_dict=True
|
| 115 |
+
)
|
| 116 |
+
query_emb = output.last_hidden_state[:, 0, :]
|
| 117 |
+
else:
|
| 118 |
+
output = self.model(**inputs, return_dict=True)
|
| 119 |
+
query_emb = pooling(output.pooler_output,
|
| 120 |
+
output.last_hidden_state,
|
| 121 |
+
inputs['attention_mask'],
|
| 122 |
+
self.pooling_method)
|
| 123 |
+
if "dpr" not in self.model_name.lower():
|
| 124 |
+
query_emb = torch.nn.functional.normalize(query_emb, dim=-1)
|
| 125 |
+
|
| 126 |
+
query_emb = query_emb.detach().cpu().numpy()
|
| 127 |
+
query_emb = query_emb.astype(np.float32, order="C")
|
| 128 |
+
|
| 129 |
+
del inputs, output
|
| 130 |
+
torch.cuda.empty_cache()
|
| 131 |
+
|
| 132 |
+
return query_emb
|
| 133 |
+
|
| 134 |
+
class BaseRetriever:
|
| 135 |
+
def __init__(self, config):
|
| 136 |
+
self.config = config
|
| 137 |
+
self.retrieval_method = config.retrieval_method
|
| 138 |
+
self.topk = config.retrieval_topk
|
| 139 |
+
|
| 140 |
+
self.index_path = config.index_path
|
| 141 |
+
self.corpus_path = config.corpus_path
|
| 142 |
+
|
| 143 |
+
def _search(self, query: str, num: int, return_score: bool):
|
| 144 |
+
raise NotImplementedError
|
| 145 |
+
|
| 146 |
+
def _batch_search(self, query_list: List[str], num: int, return_score: bool):
|
| 147 |
+
raise NotImplementedError
|
| 148 |
+
|
| 149 |
+
def search(self, query: str, num: int = None, return_score: bool = False):
|
| 150 |
+
return self._search(query, num, return_score)
|
| 151 |
+
|
| 152 |
+
def batch_search(self, query_list: List[str], num: int = None, return_score: bool = False):
|
| 153 |
+
return self._batch_search(query_list, num, return_score)
|
| 154 |
+
|
| 155 |
+
class BM25Retriever(BaseRetriever):
|
| 156 |
+
def __init__(self, config):
|
| 157 |
+
super().__init__(config)
|
| 158 |
+
from pyserini.search.lucene import LuceneSearcher
|
| 159 |
+
self.searcher = LuceneSearcher(self.index_path)
|
| 160 |
+
self.contain_doc = self._check_contain_doc()
|
| 161 |
+
if not self.contain_doc:
|
| 162 |
+
self.corpus = load_corpus(self.corpus_path)
|
| 163 |
+
self.max_process_num = 8
|
| 164 |
+
|
| 165 |
+
def _check_contain_doc(self):
|
| 166 |
+
return self.searcher.doc(0).raw() is not None
|
| 167 |
+
|
| 168 |
+
def _search(self, query: str, num: int = None, return_score: bool = False):
|
| 169 |
+
if num is None:
|
| 170 |
+
num = self.topk
|
| 171 |
+
hits = self.searcher.search(query, num)
|
| 172 |
+
if len(hits) < 1:
|
| 173 |
+
if return_score:
|
| 174 |
+
return [], []
|
| 175 |
+
else:
|
| 176 |
+
return []
|
| 177 |
+
scores = [hit.score for hit in hits]
|
| 178 |
+
if len(hits) < num:
|
| 179 |
+
warnings.warn('Not enough documents retrieved!')
|
| 180 |
+
else:
|
| 181 |
+
hits = hits[:num]
|
| 182 |
+
|
| 183 |
+
if self.contain_doc:
|
| 184 |
+
all_contents = [
|
| 185 |
+
json.loads(self.searcher.doc(hit.docid).raw())['contents']
|
| 186 |
+
for hit in hits
|
| 187 |
+
]
|
| 188 |
+
results = [
|
| 189 |
+
{
|
| 190 |
+
'title': content.split("\n")[0].strip("\""),
|
| 191 |
+
'text': "\n".join(content.split("\n")[1:]),
|
| 192 |
+
'contents': content
|
| 193 |
+
}
|
| 194 |
+
for content in all_contents
|
| 195 |
+
]
|
| 196 |
+
else:
|
| 197 |
+
results = load_docs(self.corpus, [hit.docid for hit in hits])
|
| 198 |
+
|
| 199 |
+
if return_score:
|
| 200 |
+
return results, scores
|
| 201 |
+
else:
|
| 202 |
+
return results
|
| 203 |
+
|
| 204 |
+
def _batch_search(self, query_list: List[str], num: int = None, return_score: bool = False):
|
| 205 |
+
results = []
|
| 206 |
+
scores = []
|
| 207 |
+
for query in query_list:
|
| 208 |
+
item_result, item_score = self._search(query, num, True)
|
| 209 |
+
results.append(item_result)
|
| 210 |
+
scores.append(item_score)
|
| 211 |
+
if return_score:
|
| 212 |
+
return results, scores
|
| 213 |
+
else:
|
| 214 |
+
return results
|
| 215 |
+
|
| 216 |
+
class DenseRetriever(BaseRetriever):
|
| 217 |
+
def __init__(self, config):
|
| 218 |
+
super().__init__(config)
|
| 219 |
+
self.index = faiss.read_index(self.index_path)
|
| 220 |
+
if config.faiss_gpu:
|
| 221 |
+
co = faiss.GpuMultipleClonerOptions()
|
| 222 |
+
co.useFloat16 = True
|
| 223 |
+
co.shard = True
|
| 224 |
+
self.index = faiss.index_cpu_to_all_gpus(self.index, co=co)
|
| 225 |
+
|
| 226 |
+
self.corpus = load_corpus(self.corpus_path)
|
| 227 |
+
self.encoder = Encoder(
|
| 228 |
+
model_name = self.retrieval_method,
|
| 229 |
+
model_path = config.retrieval_model_path,
|
| 230 |
+
pooling_method = config.retrieval_pooling_method,
|
| 231 |
+
max_length = config.retrieval_query_max_length,
|
| 232 |
+
use_fp16 = config.retrieval_use_fp16
|
| 233 |
+
)
|
| 234 |
+
self.topk = config.retrieval_topk
|
| 235 |
+
self.batch_size = config.retrieval_batch_size
|
| 236 |
+
|
| 237 |
+
def _search(self, query: str, num: int = None, return_score: bool = False):
|
| 238 |
+
if num is None:
|
| 239 |
+
num = self.topk
|
| 240 |
+
query_emb = self.encoder.encode(query)
|
| 241 |
+
scores, idxs = self.index.search(query_emb, k=num)
|
| 242 |
+
idxs = idxs[0]
|
| 243 |
+
scores = scores[0]
|
| 244 |
+
results = load_docs(self.corpus, idxs)
|
| 245 |
+
if return_score:
|
| 246 |
+
return results, scores.tolist()
|
| 247 |
+
else:
|
| 248 |
+
return results
|
| 249 |
+
|
| 250 |
+
def _batch_search(self, query_list: List[str], num: int = None, return_score: bool = False):
|
| 251 |
+
if isinstance(query_list, str):
|
| 252 |
+
query_list = [query_list]
|
| 253 |
+
if num is None:
|
| 254 |
+
num = self.topk
|
| 255 |
+
|
| 256 |
+
results = []
|
| 257 |
+
scores = []
|
| 258 |
+
for start_idx in tqdm(range(0, len(query_list), self.batch_size), desc='Retrieval process: '):
|
| 259 |
+
query_batch = query_list[start_idx:start_idx + self.batch_size]
|
| 260 |
+
batch_emb = self.encoder.encode(query_batch)
|
| 261 |
+
batch_scores, batch_idxs = self.index.search(batch_emb, k=num)
|
| 262 |
+
batch_scores = batch_scores.tolist()
|
| 263 |
+
batch_idxs = batch_idxs.tolist()
|
| 264 |
+
|
| 265 |
+
# load_docs is not vectorized, but is a python list approach
|
| 266 |
+
flat_idxs = sum(batch_idxs, [])
|
| 267 |
+
batch_results = load_docs(self.corpus, flat_idxs)
|
| 268 |
+
# chunk them back
|
| 269 |
+
batch_results = [batch_results[i*num : (i+1)*num] for i in range(len(batch_idxs))]
|
| 270 |
+
|
| 271 |
+
results.extend(batch_results)
|
| 272 |
+
scores.extend(batch_scores)
|
| 273 |
+
|
| 274 |
+
del batch_emb, batch_scores, batch_idxs, query_batch, flat_idxs, batch_results
|
| 275 |
+
torch.cuda.empty_cache()
|
| 276 |
+
|
| 277 |
+
if return_score:
|
| 278 |
+
return results, scores
|
| 279 |
+
else:
|
| 280 |
+
return results
|
| 281 |
+
|
| 282 |
+
def get_retriever(config):
|
| 283 |
+
if config.retrieval_method == "bm25":
|
| 284 |
+
return BM25Retriever(config)
|
| 285 |
+
else:
|
| 286 |
+
return DenseRetriever(config)
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
#####################################
|
| 290 |
+
# FastAPI server below
|
| 291 |
+
#####################################
|
| 292 |
+
|
| 293 |
+
class Config:
|
| 294 |
+
"""
|
| 295 |
+
Minimal config class (simulating your argparse)
|
| 296 |
+
Replace this with your real arguments or load them dynamically.
|
| 297 |
+
"""
|
| 298 |
+
def __init__(
|
| 299 |
+
self,
|
| 300 |
+
retrieval_method: str = "bm25",
|
| 301 |
+
retrieval_topk: int = 10,
|
| 302 |
+
index_path: str = "./index/bm25",
|
| 303 |
+
corpus_path: str = "./data/corpus.jsonl",
|
| 304 |
+
dataset_path: str = "./data",
|
| 305 |
+
data_split: str = "train",
|
| 306 |
+
faiss_gpu: bool = True,
|
| 307 |
+
retrieval_model_path: str = "./model",
|
| 308 |
+
retrieval_pooling_method: str = "mean",
|
| 309 |
+
retrieval_query_max_length: int = 256,
|
| 310 |
+
retrieval_use_fp16: bool = False,
|
| 311 |
+
retrieval_batch_size: int = 128
|
| 312 |
+
):
|
| 313 |
+
self.retrieval_method = retrieval_method
|
| 314 |
+
self.retrieval_topk = retrieval_topk
|
| 315 |
+
self.index_path = index_path
|
| 316 |
+
self.corpus_path = corpus_path
|
| 317 |
+
self.dataset_path = dataset_path
|
| 318 |
+
self.data_split = data_split
|
| 319 |
+
self.faiss_gpu = faiss_gpu
|
| 320 |
+
self.retrieval_model_path = retrieval_model_path
|
| 321 |
+
self.retrieval_pooling_method = retrieval_pooling_method
|
| 322 |
+
self.retrieval_query_max_length = retrieval_query_max_length
|
| 323 |
+
self.retrieval_use_fp16 = retrieval_use_fp16
|
| 324 |
+
self.retrieval_batch_size = retrieval_batch_size
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
class QueryRequest(BaseModel):
|
| 328 |
+
queries: List[str]
|
| 329 |
+
topk: Optional[int] = None
|
| 330 |
+
return_scores: bool = False
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
app = FastAPI()
|
| 334 |
+
|
| 335 |
+
# 1) Build a config (could also parse from arguments).
|
| 336 |
+
# In real usage, you'd parse your CLI arguments or environment variables.
|
| 337 |
+
config = Config(
|
| 338 |
+
retrieval_method = "e5", # or "dense"
|
| 339 |
+
index_path=args.index_path,
|
| 340 |
+
corpus_path=args.corpus_path,
|
| 341 |
+
retrieval_topk=args.topk,
|
| 342 |
+
faiss_gpu=True,
|
| 343 |
+
retrieval_model_path=args.retriever_model,
|
| 344 |
+
retrieval_pooling_method="mean",
|
| 345 |
+
retrieval_query_max_length=256,
|
| 346 |
+
retrieval_use_fp16=True,
|
| 347 |
+
retrieval_batch_size=512,
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
# 2) Instantiate a global retriever so it is loaded once and reused.
|
| 351 |
+
retriever = get_retriever(config)
|
| 352 |
+
|
| 353 |
+
@app.post("/retrieve")
|
| 354 |
+
def retrieve_endpoint(request: QueryRequest):
|
| 355 |
+
"""
|
| 356 |
+
Endpoint that accepts queries and performs retrieval.
|
| 357 |
+
Input format:
|
| 358 |
+
{
|
| 359 |
+
"queries": ["What is Python?", "Tell me about neural networks."],
|
| 360 |
+
"topk": 3,
|
| 361 |
+
"return_scores": true
|
| 362 |
+
}
|
| 363 |
+
"""
|
| 364 |
+
if not request.topk:
|
| 365 |
+
request.topk = config.retrieval_topk # fallback to default
|
| 366 |
+
|
| 367 |
+
# Perform batch retrieval
|
| 368 |
+
results, scores = retriever.batch_search(
|
| 369 |
+
query_list=request.queries,
|
| 370 |
+
num=request.topk,
|
| 371 |
+
return_score=request.return_scores
|
| 372 |
+
)
|
| 373 |
+
|
| 374 |
+
# Format response
|
| 375 |
+
resp = []
|
| 376 |
+
for i, single_result in enumerate(results):
|
| 377 |
+
if request.return_scores:
|
| 378 |
+
# If scores are returned, combine them with results
|
| 379 |
+
combined = []
|
| 380 |
+
for doc, score in zip(single_result, scores[i]):
|
| 381 |
+
combined.append({"document": doc, "score": score})
|
| 382 |
+
resp.append(combined)
|
| 383 |
+
else:
|
| 384 |
+
resp.append(single_result)
|
| 385 |
+
return {"result": resp}
|
| 386 |
+
|
| 387 |
+
|
| 388 |
+
if __name__ == "__main__":
|
| 389 |
+
# 3) Launch the server. By default, it listens on http://127.0.0.1:8000
|
| 390 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|