Spaces:
Runtime error
Runtime error
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import numpy as np | |
| import pandas as pd | |
| # Load model | |
| model = AutoModelForCausalLM.from_pretrained("codellama/CodeLlama-7b-hf") | |
| tokenizer = AutoTokenizer.from_pretrained("codellama/CodeLlama-7b-hf") | |
| # Create test data | |
| days = 150 | |
| base_price = 100 | |
| price_changes = np.random.normal(0.001, 0.02, days).cumsum() | |
| prices = base_price * (1 + price_changes) | |
| test_data = pd.DataFrame({ | |
| 'open': prices * (1 + np.random.normal(0, 0.005, days)), | |
| 'high': prices * (1 + np.random.normal(0.01, 0.008, days)), | |
| 'low': prices * (1 + np.random.normal(-0.01, 0.008, days)), | |
| 'close': prices * (1 + np.random.normal(0, 0.005, days)), | |
| 'volume': np.random.normal(1000000, 200000, days) | |
| }) | |
| # Test pattern detection | |
| prompt = f""" | |
| Analyze this OHLCV data and detect patterns: | |
| {test_data.head().to_string()} | |
| Return: Pattern type and coordinates | |
| """ | |
| inputs = tokenizer(prompt, return_tensors="pt") | |
| outputs = model.generate(**inputs, max_length=500) | |
| result = tokenizer.decode(outputs[0]) | |
| print("Model Output:", result) | |