# src/generate.py """ Module: generate ---------------- Handles the generation of "consent sentences" for the Voice Consent Gate demo. This module connects to an external language model (in this case, the public Hugging Face Space for Llama 3.2 3B Instruct) to generate natural-sounding sentences that users can read aloud to give informed consent for voice cloning. Functions: - _extract_llama_text(): Normalize the API output from the Llama demo. - gen_sentence(): Wrapper for gen_sentence_llm(); previously supported other options. - gen_sentence_llm(): Generate a consent sentence from the Llama model Space. """ import os from typing import Any from gradio_client import Client import src.process as process from src.prompts import get_consent_generation_prompt # ------------------- Model / Space Configuration ------------------- # The demo connects to the Llama 3.2 3B Instruct Space on Hugging Face. # You can override these defaults by setting environment variables in your Space. LLAMA_SPACE_ID = os.getenv( "LLAMA_SPACE_ID", "huggingface-projects/llama-3.2-3B-Instruct" ) LLAMA_API_NAME = "/chat" # The Space exposes a single /chat endpoint. HF_TOKEN = os.getenv("HF_TOKEN") # Optional; not required for public Spaces. def _extract_llama_text(result: Any) -> str: """ Normalize the API response from the Llama 3.2 3B demo Space into plain text. The Space’s `/chat` endpoint may return different shapes depending on how the Gradio app is structured — sometimes a string, other times a dictionary or list. This function recursively traverses and extracts the first meaningful text string it finds. Parameters result : The raw output returned by `client.predict()`. str : Cleaned text output (may be empty string if extraction fails). """ if isinstance(result, str): return result.strip() if isinstance(result, (int, float, bool)): return str(result) if isinstance(result, list): # If multiple segments are returned (e.g., multiple sentences), # join them into one string. parts = [] for x in result: s = _extract_llama_text(x) if s: parts.append(s) return " ".join(parts).strip() if isinstance(result, dict): # Common key names used in Gradio JSON responses for key in ("text", "response", "content", "generated_text", "message"): v = result.get(key) if isinstance(v, str) and v.strip(): return v.strip() return "" def gen_sentence(consent_method="Llama 3.2 3B Instruct", voice_clone_model="Chatterbox"): """ Always generates a sentence via the LLM. Parameters consent_method: str The language model used to generate a consent sentence voice_clone_model: str The voice cloning model """ try: return gen_sentence_llm(consent_method, voice_clone_model) except Exception as e: # Show a helpful message directly in the Target sentence box return f"[ERROR calling LLM] {type(e).__name__}: {e}" # TODO: Support more than just Llama 3.2 3B Instruct def gen_sentence_llm(consent_method="Llama 3.2 3B Instruct", voice_clone_model="Chatterbox") -> str: """ Generate a consent sentence using the Llama 3.2 3B Instruct demo Space. This function constructs a prompt describing the linguistic and ethical requirements for a consent sentence (via `get_consent_generation_prompt`) and sends it to the Llama demo hosted on Hugging Face Spaces. The response is normalized into a single English sentence suitable for reading aloud. Parameters consent_method : str The name of the language model used to generate the consent utterance. Currently just implemented for Llama 3.2 3B Instruct. audio_model_name : str The name of the voice-cloning model to mention in the sentence. Defaults to "Chatterbox". Returns str A clean, human-readable consent sentence. """ # Generate the full natural-language prompt that the LLM will receive prompt = get_consent_generation_prompt(voice_clone_model) space_id = LLAMA_SPACE_ID api_name = LLAMA_API_NAME try: # Currently always true. if consent_method != "Llama 3.2 3B Instruct": print("Not currently implemented for %s; using Llama 3.2 3B Instruct" % consent_method) # Initialize Gradio client for the language model Space client = Client(space_id, hf_token=HF_TOKEN) # The Llama demo exposes a simple /chat endpoint with standard decoding params result = client.predict( message=prompt, max_new_tokens=128, temperature=0.6, top_p=0.9, top_k=50, repetition_penalty=1.2, api_name=api_name, ) # Normalize and clean up model output text = _extract_llama_text(result) text = process.normalize_text(text, lower=False) # Handle empty or malformed outputs if not text: raise ValueError("Empty response from Llama Space") # In case the model produces multiple lines or options, pick the first full sentence first_line = next((ln.strip() for ln in text.splitlines() if ln.strip()), "") return first_line or text except Exception as e: print(f"[gen_sentence_llm] Llama Space call failed: {type(e).__name__}: {e}") raise