Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,33 +4,37 @@ import torch
|
|
| 4 |
|
| 5 |
# Load the model and tokenizer
|
| 6 |
model_name = "jbochi/madlad400-3b-mt"
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
torch_dtype=torch.float16,
|
| 14 |
-
device_map="auto"
|
| 15 |
-
)
|
| 16 |
-
return tokenizer, model
|
| 17 |
-
|
| 18 |
-
tokenizer, model = load_model()
|
| 19 |
|
| 20 |
def translate_text(text, source_lang, target_lang):
|
| 21 |
"""
|
| 22 |
Translate text between English and Persian using MADLAD-400-3B
|
| 23 |
"""
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
source_code = lang_codes[source_lang]
|
| 26 |
target_code = lang_codes[target_lang]
|
| 27 |
|
|
|
|
| 28 |
prompt = f"<2{target_code}> {text}"
|
| 29 |
|
| 30 |
try:
|
|
|
|
| 31 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
|
|
|
|
|
|
| 32 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 33 |
|
|
|
|
| 34 |
with torch.no_grad():
|
| 35 |
outputs = model.generate(
|
| 36 |
**inputs,
|
|
@@ -38,45 +42,55 @@ def translate_text(text, source_lang, target_lang):
|
|
| 38 |
num_beams=5,
|
| 39 |
early_stopping=True,
|
| 40 |
no_repeat_ngram_size=3,
|
|
|
|
| 41 |
)
|
| 42 |
|
|
|
|
| 43 |
translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
| 44 |
return translated_text
|
| 45 |
|
| 46 |
except Exception as e:
|
| 47 |
return f"Error during translation: {str(e)}"
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
with gr.Row():
|
| 54 |
with gr.Column():
|
| 55 |
source_lang = gr.Dropdown(
|
| 56 |
choices=["English", "Persian"],
|
| 57 |
value="English",
|
| 58 |
-
label="
|
| 59 |
)
|
| 60 |
input_text = gr.Textbox(
|
| 61 |
-
lines=
|
| 62 |
placeholder="Enter text to translate...",
|
| 63 |
label="Input Text"
|
| 64 |
)
|
|
|
|
| 65 |
|
| 66 |
with gr.Column():
|
| 67 |
target_lang = gr.Dropdown(
|
| 68 |
choices=["Persian", "English"],
|
| 69 |
value="Persian",
|
| 70 |
-
label="
|
| 71 |
)
|
| 72 |
output_text = gr.Textbox(
|
| 73 |
-
lines=
|
| 74 |
label="Translated Text",
|
| 75 |
interactive=False
|
| 76 |
)
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
gr.Examples(
|
| 81 |
examples=[
|
| 82 |
["Hello, how are you today?", "English", "Persian"],
|
|
@@ -86,19 +100,31 @@ with gr.Blocks(title="English-Persian Translator", theme=gr.themes.Soft()) as de
|
|
| 86 |
],
|
| 87 |
inputs=[input_text, source_lang, target_lang],
|
| 88 |
outputs=output_text,
|
| 89 |
-
fn=translate_text
|
|
|
|
| 90 |
)
|
| 91 |
|
|
|
|
| 92 |
translate_btn.click(
|
| 93 |
fn=translate_text,
|
| 94 |
inputs=[input_text, source_lang, target_lang],
|
| 95 |
outputs=output_text
|
| 96 |
)
|
| 97 |
|
|
|
|
| 98 |
def update_target_lang(source_lang):
|
| 99 |
return "Persian" if source_lang == "English" else "English"
|
| 100 |
|
| 101 |
-
source_lang.change(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
if __name__ == "__main__":
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
# Load the model and tokenizer
|
| 6 |
model_name = "jbochi/madlad400-3b-mt"
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 9 |
+
model_name,
|
| 10 |
+
torch_dtype=torch.float16, # Use float16 to reduce memory usage
|
| 11 |
+
device_map="auto"
|
| 12 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
def translate_text(text, source_lang, target_lang):
|
| 15 |
"""
|
| 16 |
Translate text between English and Persian using MADLAD-400-3B
|
| 17 |
"""
|
| 18 |
+
# Define language codes for the model
|
| 19 |
+
lang_codes = {
|
| 20 |
+
"English": "en",
|
| 21 |
+
"Persian": "fa"
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
source_code = lang_codes[source_lang]
|
| 25 |
target_code = lang_codes[target_lang]
|
| 26 |
|
| 27 |
+
# Create the translation prompt in the format the model expects
|
| 28 |
prompt = f"<2{target_code}> {text}"
|
| 29 |
|
| 30 |
try:
|
| 31 |
+
# Tokenize input
|
| 32 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
| 33 |
+
|
| 34 |
+
# Move inputs to the same device as model
|
| 35 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 36 |
|
| 37 |
+
# Generate translation
|
| 38 |
with torch.no_grad():
|
| 39 |
outputs = model.generate(
|
| 40 |
**inputs,
|
|
|
|
| 42 |
num_beams=5,
|
| 43 |
early_stopping=True,
|
| 44 |
no_repeat_ngram_size=3,
|
| 45 |
+
length_penalty=1.0
|
| 46 |
)
|
| 47 |
|
| 48 |
+
# Decode the output
|
| 49 |
translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 50 |
+
|
| 51 |
return translated_text
|
| 52 |
|
| 53 |
except Exception as e:
|
| 54 |
return f"Error during translation: {str(e)}"
|
| 55 |
|
| 56 |
+
# Create the Gradio interface
|
| 57 |
+
with gr.Blocks(title="English-Persian Translator") as demo:
|
| 58 |
+
gr.Markdown(
|
| 59 |
+
"""
|
| 60 |
+
# 🌍 English-Persian Translator
|
| 61 |
+
**Powered by MADLAD-400-3B Model**
|
| 62 |
+
|
| 63 |
+
Translate text between English and Persian using the state-of-the-art MADLAD-400 model.
|
| 64 |
+
"""
|
| 65 |
+
)
|
| 66 |
|
| 67 |
with gr.Row():
|
| 68 |
with gr.Column():
|
| 69 |
source_lang = gr.Dropdown(
|
| 70 |
choices=["English", "Persian"],
|
| 71 |
value="English",
|
| 72 |
+
label="Source Language"
|
| 73 |
)
|
| 74 |
input_text = gr.Textbox(
|
| 75 |
+
lines=5,
|
| 76 |
placeholder="Enter text to translate...",
|
| 77 |
label="Input Text"
|
| 78 |
)
|
| 79 |
+
translate_btn = gr.Button("Translate", variant="primary")
|
| 80 |
|
| 81 |
with gr.Column():
|
| 82 |
target_lang = gr.Dropdown(
|
| 83 |
choices=["Persian", "English"],
|
| 84 |
value="Persian",
|
| 85 |
+
label="Target Language"
|
| 86 |
)
|
| 87 |
output_text = gr.Textbox(
|
| 88 |
+
lines=5,
|
| 89 |
label="Translated Text",
|
| 90 |
interactive=False
|
| 91 |
)
|
| 92 |
|
| 93 |
+
# Examples
|
|
|
|
| 94 |
gr.Examples(
|
| 95 |
examples=[
|
| 96 |
["Hello, how are you today?", "English", "Persian"],
|
|
|
|
| 100 |
],
|
| 101 |
inputs=[input_text, source_lang, target_lang],
|
| 102 |
outputs=output_text,
|
| 103 |
+
fn=translate_text,
|
| 104 |
+
cache_examples=False
|
| 105 |
)
|
| 106 |
|
| 107 |
+
# Connect the button
|
| 108 |
translate_btn.click(
|
| 109 |
fn=translate_text,
|
| 110 |
inputs=[input_text, source_lang, target_lang],
|
| 111 |
outputs=output_text
|
| 112 |
)
|
| 113 |
|
| 114 |
+
# Auto-update target language based on source selection
|
| 115 |
def update_target_lang(source_lang):
|
| 116 |
return "Persian" if source_lang == "English" else "English"
|
| 117 |
|
| 118 |
+
source_lang.change(
|
| 119 |
+
fn=update_target_lang,
|
| 120 |
+
inputs=source_lang,
|
| 121 |
+
outputs=target_lang
|
| 122 |
+
)
|
| 123 |
|
| 124 |
if __name__ == "__main__":
|
| 125 |
+
# Launch the app
|
| 126 |
+
demo.launch(
|
| 127 |
+
server_name="0.0.0.0", # Allow external access
|
| 128 |
+
share=False, # Set to True to get a public URL
|
| 129 |
+
debug=True
|
| 130 |
+
)
|