Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,10 +12,10 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
| 12 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 13 |
|
| 14 |
@spaces.GPU
|
| 15 |
-
def generate(
|
| 16 |
messages = [
|
| 17 |
{"role": "system", "content": "You are Zurich, a 7 billion parameter Large Language model built on the Qwen 2.5 7B model developed by Alibaba Cloud, and fine-tuned by Ruben Roy. You have been fine-tuned with the GammaCorpus v2 dataset, a dataset filled with structured and filtered multi-turn conversations and was also created by Ruben Roy. You are a helpful assistant."},
|
| 18 |
-
{"role": "user", "content":
|
| 19 |
]
|
| 20 |
text = tokenizer.apply_chat_template(
|
| 21 |
messages,
|
|
@@ -25,12 +25,12 @@ def generate(prompt, history, temperature, top_p, top_k, max_new_tokens, repetit
|
|
| 25 |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 26 |
generated_ids = model.generate(
|
| 27 |
**model_inputs,
|
| 28 |
-
temperature=temperature,
|
| 29 |
-
top_p=top_p,
|
| 30 |
-
top_k=top_k,
|
| 31 |
-
max_new_tokens=max_new_tokens,
|
| 32 |
-
repetition_penalty=repetition_penalty,
|
| 33 |
-
do_sample=True if temperature > 0 else False
|
| 34 |
)
|
| 35 |
generated_ids = [
|
| 36 |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
|
@@ -162,63 +162,71 @@ examples = [
|
|
| 162 |
["What are the key differences between machine learning and deep learning?"]
|
| 163 |
]
|
| 164 |
|
| 165 |
-
def create_generation_settings():
|
| 166 |
-
with gr.Group():
|
| 167 |
-
with gr.Accordion("Generation Settings", open=False):
|
| 168 |
-
temperature = gr.Slider(
|
| 169 |
-
minimum=0.0,
|
| 170 |
-
maximum=2.0,
|
| 171 |
-
value=0.7,
|
| 172 |
-
step=0.1,
|
| 173 |
-
label="Temperature",
|
| 174 |
-
info="Higher values make the output more random, lower values make it more focused and deterministic"
|
| 175 |
-
)
|
| 176 |
-
top_p = gr.Slider(
|
| 177 |
-
minimum=0.0,
|
| 178 |
-
maximum=1.0,
|
| 179 |
-
value=0.9,
|
| 180 |
-
step=0.05,
|
| 181 |
-
label="Top P",
|
| 182 |
-
info="Used for nucleus sampling - controls the cumulative probability of tokens to consider"
|
| 183 |
-
)
|
| 184 |
-
top_k = gr.Slider(
|
| 185 |
-
minimum=1,
|
| 186 |
-
maximum=100,
|
| 187 |
-
value=50,
|
| 188 |
-
step=1,
|
| 189 |
-
label="Top K",
|
| 190 |
-
info="Limits the number of tokens to consider for each step of text generation"
|
| 191 |
-
)
|
| 192 |
-
max_new_tokens = gr.Slider(
|
| 193 |
-
minimum=1,
|
| 194 |
-
maximum=2048,
|
| 195 |
-
value=512,
|
| 196 |
-
step=1,
|
| 197 |
-
label="Max New Tokens",
|
| 198 |
-
info="Maximum number of tokens to generate in the response"
|
| 199 |
-
)
|
| 200 |
-
repetition_penalty = gr.Slider(
|
| 201 |
-
minimum=1.0,
|
| 202 |
-
maximum=2.0,
|
| 203 |
-
value=1.1,
|
| 204 |
-
step=0.1,
|
| 205 |
-
label="Repetition Penalty",
|
| 206 |
-
info="Higher values prevent the model from repeating the same information"
|
| 207 |
-
)
|
| 208 |
-
return temperature, top_p, top_k, max_new_tokens, repetition_penalty
|
| 209 |
-
|
| 210 |
with gr.Blocks() as demo:
|
| 211 |
gr.HTML(TITLE_HTML)
|
| 212 |
|
| 213 |
-
|
| 214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
|
| 216 |
-
# Create the chat interface with the additional parameters
|
| 217 |
chatbot = gr.ChatInterface(
|
| 218 |
-
fn=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
examples=examples,
|
| 220 |
title="Chat with Zurich",
|
| 221 |
-
description="Ask me anything! I'm here to help with explanations, coding, math, writing, and more."
|
| 222 |
)
|
| 223 |
|
| 224 |
demo.launch(share=True)
|
|
|
|
| 12 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 13 |
|
| 14 |
@spaces.GPU
|
| 15 |
+
def generate(message, chat_history, temperature=0.7, top_p=0.9, top_k=50, max_new_tokens=512, repetition_penalty=1.1):
|
| 16 |
messages = [
|
| 17 |
{"role": "system", "content": "You are Zurich, a 7 billion parameter Large Language model built on the Qwen 2.5 7B model developed by Alibaba Cloud, and fine-tuned by Ruben Roy. You have been fine-tuned with the GammaCorpus v2 dataset, a dataset filled with structured and filtered multi-turn conversations and was also created by Ruben Roy. You are a helpful assistant."},
|
| 18 |
+
{"role": "user", "content": message}
|
| 19 |
]
|
| 20 |
text = tokenizer.apply_chat_template(
|
| 21 |
messages,
|
|
|
|
| 25 |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 26 |
generated_ids = model.generate(
|
| 27 |
**model_inputs,
|
| 28 |
+
temperature=float(temperature),
|
| 29 |
+
top_p=float(top_p),
|
| 30 |
+
top_k=int(top_k),
|
| 31 |
+
max_new_tokens=int(max_new_tokens),
|
| 32 |
+
repetition_penalty=float(repetition_penalty),
|
| 33 |
+
do_sample=True if float(temperature) > 0 else False
|
| 34 |
)
|
| 35 |
generated_ids = [
|
| 36 |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
|
|
|
| 162 |
["What are the key differences between machine learning and deep learning?"]
|
| 163 |
]
|
| 164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
with gr.Blocks() as demo:
|
| 166 |
gr.HTML(TITLE_HTML)
|
| 167 |
|
| 168 |
+
with gr.Accordion("Generation Settings", open=False):
|
| 169 |
+
with gr.Row():
|
| 170 |
+
with gr.Column():
|
| 171 |
+
temperature = gr.Slider(
|
| 172 |
+
minimum=0.0,
|
| 173 |
+
maximum=2.0,
|
| 174 |
+
value=0.7,
|
| 175 |
+
step=0.1,
|
| 176 |
+
label="Temperature",
|
| 177 |
+
info="Higher values make the output more random, lower values make it more focused and deterministic",
|
| 178 |
+
interactive=True
|
| 179 |
+
)
|
| 180 |
+
top_p = gr.Slider(
|
| 181 |
+
minimum=0.0,
|
| 182 |
+
maximum=1.0,
|
| 183 |
+
value=0.9,
|
| 184 |
+
step=0.05,
|
| 185 |
+
label="Top P",
|
| 186 |
+
info="Controls the cumulative probability threshold for nucleus sampling",
|
| 187 |
+
interactive=True
|
| 188 |
+
)
|
| 189 |
+
top_k = gr.Slider(
|
| 190 |
+
minimum=1,
|
| 191 |
+
maximum=100,
|
| 192 |
+
value=50,
|
| 193 |
+
step=1,
|
| 194 |
+
label="Top K",
|
| 195 |
+
info="Limits the number of tokens to consider for each generation step",
|
| 196 |
+
interactive=True
|
| 197 |
+
)
|
| 198 |
+
with gr.Column():
|
| 199 |
+
max_new_tokens = gr.Slider(
|
| 200 |
+
minimum=1,
|
| 201 |
+
maximum=2048,
|
| 202 |
+
value=512,
|
| 203 |
+
step=1,
|
| 204 |
+
label="Max New Tokens",
|
| 205 |
+
info="Maximum number of tokens to generate in the response",
|
| 206 |
+
interactive=True
|
| 207 |
+
)
|
| 208 |
+
repetition_penalty = gr.Slider(
|
| 209 |
+
minimum=1.0,
|
| 210 |
+
maximum=2.0,
|
| 211 |
+
value=1.1,
|
| 212 |
+
step=0.1,
|
| 213 |
+
label="Repetition Penalty",
|
| 214 |
+
info="Higher values prevent the model from repeating the same information",
|
| 215 |
+
interactive=True
|
| 216 |
+
)
|
| 217 |
|
|
|
|
| 218 |
chatbot = gr.ChatInterface(
|
| 219 |
+
fn=generate,
|
| 220 |
+
additional_inputs=[
|
| 221 |
+
temperature,
|
| 222 |
+
top_p,
|
| 223 |
+
top_k,
|
| 224 |
+
max_new_tokens,
|
| 225 |
+
repetition_penalty
|
| 226 |
+
],
|
| 227 |
examples=examples,
|
| 228 |
title="Chat with Zurich",
|
| 229 |
+
description="Ask me anything! I'm here to help with explanations, coding, math, writing, and more."
|
| 230 |
)
|
| 231 |
|
| 232 |
demo.launch(share=True)
|