Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,100 +1,57 @@
|
|
| 1 |
-
import
|
| 2 |
import re
|
| 3 |
-
import
|
|
|
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
import torch
|
| 6 |
-
import spaces
|
| 7 |
-
import gradio as gr
|
| 8 |
from PIL import Image, ImageDraw, ImageFont
|
| 9 |
-
from typing import Tuple, Optional, List, Dict, Any
|
| 10 |
|
| 11 |
-
# Transformers
|
| 12 |
from transformers import (
|
| 13 |
Qwen2_5_VLForConditionalGeneration,
|
| 14 |
AutoProcessor,
|
| 15 |
)
|
| 16 |
from qwen_vl_utils import process_vision_info
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
# -----------------------------------------------------------------------------
|
| 19 |
-
#
|
| 20 |
# -----------------------------------------------------------------------------
|
| 21 |
|
| 22 |
OS_ACTIONS = """
|
| 23 |
-
def
|
| 24 |
-
\"\"\"
|
| 25 |
-
Provides a final answer to the given problem.
|
| 26 |
-
Args:
|
| 27 |
-
answer: The final answer to the problem
|
| 28 |
-
\"\"\"
|
| 29 |
-
|
| 30 |
-
def move_mouse(self, x: float, y: float) -> str:
|
| 31 |
-
\"\"\"
|
| 32 |
-
Moves the mouse cursor to the specified coordinates
|
| 33 |
-
Args:
|
| 34 |
-
x: The x coordinate (horizontal position)
|
| 35 |
-
y: The y coordinate (vertical position)
|
| 36 |
\"\"\"
|
| 37 |
-
|
| 38 |
-
def click(x: Optional[float] = None, y: Optional[float] = None) -> str:
|
| 39 |
-
\"\"\"
|
| 40 |
-
Performs a left-click at the specified normalized coordinates
|
| 41 |
Args:
|
| 42 |
-
x: The x coordinate (
|
| 43 |
-
y: The y coordinate (
|
| 44 |
\"\"\"
|
| 45 |
|
| 46 |
-
def double_click(x:
|
| 47 |
\"\"\"
|
| 48 |
-
Performs a double-click at the specified normalized coordinates
|
| 49 |
Args:
|
| 50 |
-
x: The x coordinate (
|
| 51 |
-
y: The y coordinate (
|
| 52 |
\"\"\"
|
| 53 |
|
| 54 |
def type(text: str) -> str:
|
| 55 |
\"\"\"
|
| 56 |
-
Types the specified text
|
| 57 |
Args:
|
| 58 |
-
text: The text to type
|
| 59 |
-
\"\"\"
|
| 60 |
-
|
| 61 |
-
def press(keys: str | list[str]) -> str:
|
| 62 |
-
\"\"\"
|
| 63 |
-
Presses a keyboard key
|
| 64 |
-
Args:
|
| 65 |
-
keys: The key or list of keys to press (e.g. "enter", "space", "backspace", "ctrl", etc.).
|
| 66 |
-
\"\"\"
|
| 67 |
-
|
| 68 |
-
def navigate_back() -> str:
|
| 69 |
-
\"\"\"
|
| 70 |
-
Goes back to the previous page in the browser. If using this tool doesn't work, just click the button directly.
|
| 71 |
\"\"\"
|
| 72 |
|
| 73 |
def drag(from_coord: list[float], to_coord: list[float]) -> str:
|
| 74 |
\"\"\"
|
| 75 |
-
|
| 76 |
-
Args:
|
| 77 |
-
x1: origin x coordinate
|
| 78 |
-
y1: origin y coordinate
|
| 79 |
-
x2: end x coordinate
|
| 80 |
-
y2: end y coordinate
|
| 81 |
-
\"\"\"
|
| 82 |
-
|
| 83 |
-
def scroll(direction: Literal["up", "down"] = "down", amount: int = 1) -> str:
|
| 84 |
-
\"\"\"
|
| 85 |
-
Moves the mouse to selected coordinates, then uses the scroll button: this could scroll the page or zoom, depending on the app. DO NOT use scroll to move through linux desktop menus.
|
| 86 |
Args:
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
direction: The direction to scroll ("up" or "down"), defaults to "down". For zoom, "up" zooms in, "down" zooms out.
|
| 90 |
-
amount: The amount to scroll. A good amount is 1 or 2.
|
| 91 |
-
\"\"\"
|
| 92 |
-
|
| 93 |
-
def wait(seconds: float) -> str:
|
| 94 |
-
\"\"\"
|
| 95 |
-
Waits for the specified number of seconds. Very useful in case the prior order is still executing (for example starting very heavy applications like browsers or office apps)
|
| 96 |
-
Args:
|
| 97 |
-
seconds: Number of seconds to wait, generally 2 is enough.
|
| 98 |
\"\"\"
|
| 99 |
"""
|
| 100 |
|
|
@@ -102,73 +59,71 @@ OS_SYSTEM_PROMPT = f"""You are a helpful GUI agent. You’ll be given a task and
|
|
| 102 |
|
| 103 |
For each step:
|
| 104 |
• First, <think></think> to express the thought process guiding your next action and the reasoning behind it.
|
| 105 |
-
• Then, use <code></code> to perform the action.
|
| 106 |
|
| 107 |
The following functions are exposed to the Python interpreter:
|
| 108 |
<code>
|
| 109 |
{OS_ACTIONS}
|
| 110 |
</code>
|
| 111 |
|
| 112 |
-
The state persists between code executions
|
| 113 |
"""
|
| 114 |
|
| 115 |
# -----------------------------------------------------------------------------
|
| 116 |
-
#
|
| 117 |
# -----------------------------------------------------------------------------
|
| 118 |
|
| 119 |
-
class
|
| 120 |
-
def __init__(self, model_id: str, to_device: str
|
| 121 |
-
print(f"Loading
|
| 122 |
self.model_id = model_id
|
| 123 |
|
| 124 |
-
# Load Processor
|
| 125 |
try:
|
| 126 |
self.processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
| 127 |
-
except Exception as e:
|
| 128 |
-
print(f"Error loading processor: {e}")
|
| 129 |
-
raise e
|
| 130 |
-
|
| 131 |
-
# Load Model
|
| 132 |
-
try:
|
| 133 |
self.model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 134 |
model_id,
|
| 135 |
trust_remote_code=True,
|
| 136 |
-
torch_dtype=torch.bfloat16,
|
| 137 |
device_map="auto" if to_device == "cuda" else None,
|
| 138 |
)
|
| 139 |
if to_device == "cpu":
|
| 140 |
self.model.to("cpu")
|
| 141 |
-
|
| 142 |
-
print("Model loaded successfully.")
|
| 143 |
except Exception as e:
|
| 144 |
-
print(f"
|
| 145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
-
def generate(self, messages: list[dict], **kwargs):
|
| 148 |
-
|
|
|
|
|
|
|
| 149 |
text = self.processor.apply_chat_template(
|
| 150 |
messages, tokenize=False, add_generation_prompt=True
|
| 151 |
)
|
|
|
|
| 152 |
|
| 153 |
-
# 2. Process images/videos
|
| 154 |
-
image_inputs, video_inputs = process_vision_info(messages)
|
| 155 |
-
|
| 156 |
-
# 3. Create model inputs
|
| 157 |
inputs = self.processor(
|
| 158 |
text=[text],
|
| 159 |
images=image_inputs,
|
| 160 |
-
videos=video_inputs,
|
| 161 |
padding=True,
|
| 162 |
return_tensors="pt",
|
| 163 |
-
)
|
| 164 |
-
inputs = inputs.to(self.model.device)
|
| 165 |
|
| 166 |
-
|
| 167 |
-
|
| 168 |
|
| 169 |
-
#
|
| 170 |
generated_ids_trimmed = [
|
| 171 |
-
out_ids[len(in_ids)
|
| 172 |
]
|
| 173 |
|
| 174 |
output_text = self.processor.batch_decode(
|
|
@@ -177,17 +132,20 @@ class TransformersModel:
|
|
| 177 |
|
| 178 |
return output_text
|
| 179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
# -----------------------------------------------------------------------------
|
| 181 |
-
#
|
| 182 |
# -----------------------------------------------------------------------------
|
| 183 |
|
| 184 |
-
def
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
def get_navigation_prompt(task, image):
|
| 190 |
-
"""Constructs the prompt messages for the model"""
|
| 191 |
return [
|
| 192 |
{
|
| 193 |
"role": "system",
|
|
@@ -197,40 +155,30 @@ def get_navigation_prompt(task, image):
|
|
| 197 |
"role": "user",
|
| 198 |
"content": [
|
| 199 |
{"type": "image", "image": image},
|
| 200 |
-
{"type": "text", "text": f"
|
| 201 |
],
|
| 202 |
},
|
| 203 |
]
|
| 204 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
def parse_actions_from_response(response: str) -> list[str]:
|
| 206 |
-
"""Parse actions from model response using
|
| 207 |
-
# Look for code block
|
| 208 |
pattern = r"<code>\s*(.*?)\s*</code>"
|
| 209 |
matches = re.findall(pattern, response, re.DOTALL)
|
| 210 |
-
|
| 211 |
-
# If no code block, try to find raw function calls if the model forgot tags
|
| 212 |
-
if not matches:
|
| 213 |
-
# Fallback: look for lines starting with known functions
|
| 214 |
-
funcs = ["click", "type", "press", "drag", "scroll", "wait"]
|
| 215 |
-
lines = response.split('\n')
|
| 216 |
-
found = []
|
| 217 |
-
for line in lines:
|
| 218 |
-
line = line.strip()
|
| 219 |
-
if any(line.startswith(f) for f in funcs):
|
| 220 |
-
found.append(line)
|
| 221 |
-
return found
|
| 222 |
-
|
| 223 |
return matches
|
| 224 |
|
| 225 |
def extract_coordinates_from_action(action_code: str) -> list[dict]:
|
| 226 |
-
"""Extract coordinates from action code for
|
| 227 |
localization_actions = []
|
| 228 |
|
| 229 |
-
# Patterns for different action types
|
| 230 |
patterns = {
|
| 231 |
'click': r'click\((?:x=)?([0-9.]+)(?:,\s*(?:y=)?([0-9.]+))?\)',
|
| 232 |
'double_click': r'double_click\((?:x=)?([0-9.]+)(?:,\s*(?:y=)?([0-9.]+))?\)',
|
| 233 |
-
'move_mouse': r'move_mouse\((?:self,\s*)?(?:x=)?([0-9.]+)(?:,\s*(?:y=)?([0-9.]+))\)',
|
| 234 |
'drag': r'drag\(\[([0-9.]+),\s*([0-9.]+)\],\s*\[([0-9.]+),\s*([0-9.]+)\]\)'
|
| 235 |
}
|
| 236 |
|
|
@@ -238,35 +186,17 @@ def extract_coordinates_from_action(action_code: str) -> list[dict]:
|
|
| 238 |
matches = re.finditer(pattern, action_code)
|
| 239 |
for match in matches:
|
| 240 |
if action_type == 'drag':
|
| 241 |
-
|
| 242 |
-
from_x, from_y,
|
| 243 |
-
localization_actions.append({
|
| 244 |
-
'type': 'drag_from', 'x': float(from_x), 'y': float(from_y), 'action': action_type
|
| 245 |
-
})
|
| 246 |
-
localization_actions.append({
|
| 247 |
-
'type': 'drag_to', 'x': float(to_x), 'y': float(to_y), 'action': action_type
|
| 248 |
-
})
|
| 249 |
else:
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
x_val = match.group(1)
|
| 253 |
-
y_val = match.group(2) if match.group(2) else x_val
|
| 254 |
-
|
| 255 |
-
# Convert pixel coords to normalized if they look like pixels (assuming > 1000 width usually)
|
| 256 |
-
# Note: The prompt implies normalized (0.0-1.0), but if model outputs 500, we handle it visually later
|
| 257 |
-
|
| 258 |
-
if x_val and y_val:
|
| 259 |
-
localization_actions.append({
|
| 260 |
-
'type': action_type,
|
| 261 |
-
'x': float(x_val),
|
| 262 |
-
'y': float(y_val),
|
| 263 |
-
'action': action_type
|
| 264 |
-
})
|
| 265 |
|
| 266 |
return localization_actions
|
| 267 |
|
| 268 |
def create_localized_image(original_image: Image.Image, coordinates: list[dict]) -> Optional[Image.Image]:
|
| 269 |
-
"""
|
| 270 |
if not coordinates:
|
| 271 |
return None
|
| 272 |
|
|
@@ -275,142 +205,127 @@ def create_localized_image(original_image: Image.Image, coordinates: list[dict])
|
|
| 275 |
width, height = img_copy.size
|
| 276 |
|
| 277 |
try:
|
|
|
|
|
|
|
| 278 |
font = ImageFont.load_default()
|
| 279 |
-
except:
|
| 280 |
-
font = None
|
| 281 |
|
| 282 |
-
colors = {
|
| 283 |
-
'click': 'red', 'double_click': 'blue', 'move_mouse': 'green',
|
| 284 |
-
'drag_from': 'orange', 'drag_to': 'purple'
|
| 285 |
-
}
|
| 286 |
|
| 287 |
for i, coord in enumerate(coordinates):
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
if x <= 1.0 and y <= 1.0:
|
| 292 |
-
pixel_x = int(x * width)
|
| 293 |
-
pixel_y = int(y * height)
|
| 294 |
-
else:
|
| 295 |
-
pixel_x = int(x)
|
| 296 |
-
pixel_y = int(y)
|
| 297 |
-
|
| 298 |
color = colors.get(coord['type'], 'red')
|
| 299 |
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
draw.ellipse([pixel_x - r, pixel_y - r, pixel_x + r, pixel_y + r],
|
| 303 |
-
fill=color, outline='white', width=2)
|
| 304 |
|
| 305 |
-
|
| 306 |
-
label =
|
| 307 |
-
text_pos = (pixel_x + 10, pixel_y - 10)
|
| 308 |
-
if font:
|
| 309 |
-
draw.text(text_pos, label, fill=color, font=font)
|
| 310 |
-
else:
|
| 311 |
-
draw.text(text_pos, label, fill=color)
|
| 312 |
|
| 313 |
-
# Draw Arrow for Drag
|
| 314 |
if coord['type'] == 'drag_from' and i + 1 < len(coordinates) and coordinates[i + 1]['type'] == 'drag_to':
|
| 315 |
next_coord = coordinates[i + 1]
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
if nx <= 1.0 and ny <= 1.0:
|
| 319 |
-
end_x, end_y = int(nx * width), int(ny * height)
|
| 320 |
-
else:
|
| 321 |
-
end_x, end_y = int(nx), int(ny)
|
| 322 |
-
|
| 323 |
draw.line([pixel_x, pixel_y, end_x, end_y], fill='orange', width=3)
|
| 324 |
|
| 325 |
return img_copy
|
| 326 |
|
| 327 |
# -----------------------------------------------------------------------------
|
| 328 |
-
#
|
| 329 |
-
# -----------------------------------------------------------------------------
|
| 330 |
-
|
| 331 |
-
# Using Fara-7B (or fallback)
|
| 332 |
-
MODEL_ID = "microsoft/Fara-7B"
|
| 333 |
-
|
| 334 |
-
print(f"Initializing {MODEL_ID}...")
|
| 335 |
-
# Global model instance
|
| 336 |
-
# Note: We initialize this lazily or globally depending on environment.
|
| 337 |
-
# For Gradio Spaces, global init is standard.
|
| 338 |
-
try:
|
| 339 |
-
model = TransformersModel(model_id=MODEL_ID, to_device="cuda" if torch.cuda.is_available() else "cpu")
|
| 340 |
-
except Exception as e:
|
| 341 |
-
print(f"Failed to load Fara. Trying fallback Qwen...")
|
| 342 |
-
model = TransformersModel(model_id="Qwen/Qwen2.5-VL-7B-Instruct", to_device="cuda" if torch.cuda.is_available() else "cpu")
|
| 343 |
-
|
| 344 |
-
# -----------------------------------------------------------------------------
|
| 345 |
-
# 5. GRADIO APP
|
| 346 |
# -----------------------------------------------------------------------------
|
| 347 |
|
| 348 |
-
@spaces.GPU
|
| 349 |
-
def
|
| 350 |
-
|
| 351 |
-
|
|
|
|
|
|
|
|
|
|
| 352 |
|
| 353 |
input_pil_image = array_to_image(input_numpy_image)
|
| 354 |
|
| 355 |
-
# Generate
|
| 356 |
-
|
|
|
|
|
|
|
| 357 |
|
| 358 |
-
#
|
| 359 |
-
|
| 360 |
-
response_str = model.generate(prompt_msgs, max_new_tokens=500)
|
| 361 |
-
print(f"Model Response: {response_str}")
|
| 362 |
|
| 363 |
-
#
|
| 364 |
-
actions = parse_actions_from_response(response_str)
|
| 365 |
-
|
| 366 |
-
# Extract Coordinates
|
| 367 |
all_coordinates = []
|
| 368 |
-
for
|
| 369 |
-
|
| 370 |
-
all_coordinates.extend(
|
| 371 |
|
| 372 |
-
#
|
| 373 |
-
|
| 374 |
if all_coordinates:
|
| 375 |
-
|
|
|
|
|
|
|
|
|
|
| 376 |
|
| 377 |
-
|
|
|
|
| 378 |
|
| 379 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 380 |
description = """
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
This
|
| 384 |
"""
|
| 385 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 386 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 387 |
gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>")
|
| 388 |
gr.Markdown(description)
|
| 389 |
|
| 390 |
-
with gr.Row():
|
| 391 |
-
input_image = gr.Image(label="Upload Screenshot", height=500, type="numpy")
|
| 392 |
-
|
| 393 |
with gr.Row():
|
| 394 |
with gr.Column(scale=1):
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
|
|
|
| 399 |
)
|
| 400 |
-
|
| 401 |
|
| 402 |
with gr.Column(scale=1):
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
|
|
|
|
|
|
| 410 |
)
|
| 411 |
|
| 412 |
-
|
| 413 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 414 |
|
| 415 |
if __name__ == "__main__":
|
| 416 |
-
demo.launch()
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
import re
|
| 3 |
+
from typing import Tuple, Optional, List, Dict, Any
|
| 4 |
+
|
| 5 |
+
import gradio as gr
|
| 6 |
import numpy as np
|
| 7 |
import torch
|
|
|
|
|
|
|
| 8 |
from PIL import Image, ImageDraw, ImageFont
|
|
|
|
| 9 |
|
| 10 |
+
# Transformers imports for Fara Model
|
| 11 |
from transformers import (
|
| 12 |
Qwen2_5_VLForConditionalGeneration,
|
| 13 |
AutoProcessor,
|
| 14 |
)
|
| 15 |
from qwen_vl_utils import process_vision_info
|
| 16 |
|
| 17 |
+
# --- Configuration ---
|
| 18 |
+
MODEL_ID = "microsoft/Fara-7B"
|
| 19 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 20 |
+
|
| 21 |
# -----------------------------------------------------------------------------
|
| 22 |
+
# PROMPT DEFINITIONS (from prompt.py)
|
| 23 |
# -----------------------------------------------------------------------------
|
| 24 |
|
| 25 |
OS_ACTIONS = """
|
| 26 |
+
def click(x: float, y: float) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
\"\"\"
|
| 28 |
+
Performs a left-click at the specified normalized coordinates.
|
|
|
|
|
|
|
|
|
|
| 29 |
Args:
|
| 30 |
+
x: The x coordinate (0.0 to 1.0).
|
| 31 |
+
y: The y coordinate (0.0 to 1.0).
|
| 32 |
\"\"\"
|
| 33 |
|
| 34 |
+
def double_click(x: float, y: float) -> str:
|
| 35 |
\"\"\"
|
| 36 |
+
Performs a double-click at the specified normalized coordinates.
|
| 37 |
Args:
|
| 38 |
+
x: The x coordinate (0.0 to 1.0).
|
| 39 |
+
y: The y coordinate (0.0 to 1.0).
|
| 40 |
\"\"\"
|
| 41 |
|
| 42 |
def type(text: str) -> str:
|
| 43 |
\"\"\"
|
| 44 |
+
Types the specified text.
|
| 45 |
Args:
|
| 46 |
+
text: The text to type.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
\"\"\"
|
| 48 |
|
| 49 |
def drag(from_coord: list[float], to_coord: list[float]) -> str:
|
| 50 |
\"\"\"
|
| 51 |
+
Drags from [x1, y1] to [x2, y2].
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
Args:
|
| 53 |
+
from_coord: The starting normalized coordinates [x1, y1].
|
| 54 |
+
to_coord: The ending normalized coordinates [x2, y2].
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
\"\"\"
|
| 56 |
"""
|
| 57 |
|
|
|
|
| 59 |
|
| 60 |
For each step:
|
| 61 |
• First, <think></think> to express the thought process guiding your next action and the reasoning behind it.
|
| 62 |
+
• Then, use <code></code> to perform the action. It will be executed in a stateful environment.
|
| 63 |
|
| 64 |
The following functions are exposed to the Python interpreter:
|
| 65 |
<code>
|
| 66 |
{OS_ACTIONS}
|
| 67 |
</code>
|
| 68 |
|
| 69 |
+
The state persists between code executions.
|
| 70 |
"""
|
| 71 |
|
| 72 |
# -----------------------------------------------------------------------------
|
| 73 |
+
# FARA MODEL WRAPPER (adapted from smolvlm_inference.py)
|
| 74 |
# -----------------------------------------------------------------------------
|
| 75 |
|
| 76 |
+
class FaraModelWrapper:
|
| 77 |
+
def __init__(self, model_id: str, to_device: str):
|
| 78 |
+
print(f"Loading {model_id} on {to_device}...")
|
| 79 |
self.model_id = model_id
|
| 80 |
|
|
|
|
| 81 |
try:
|
| 82 |
self.processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
self.model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 84 |
model_id,
|
| 85 |
trust_remote_code=True,
|
| 86 |
+
torch_dtype=torch.bfloat16 if to_device == "cuda" else torch.float32,
|
| 87 |
device_map="auto" if to_device == "cuda" else None,
|
| 88 |
)
|
| 89 |
if to_device == "cpu":
|
| 90 |
self.model.to("cpu")
|
| 91 |
+
self.model.eval()
|
| 92 |
+
print("Fara Model loaded successfully.")
|
| 93 |
except Exception as e:
|
| 94 |
+
print(f"Failed to load Fara, falling back to Qwen2.5-VL-7B. Error: {e}")
|
| 95 |
+
fallback_id = "Qwen/Qwen2.5-VL-7B-Instruct"
|
| 96 |
+
self.processor = AutoProcessor.from_pretrained(fallback_id, trust_remote_code=True)
|
| 97 |
+
self.model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 98 |
+
fallback_id,
|
| 99 |
+
trust_remote_code=True,
|
| 100 |
+
torch_dtype=torch.bfloat16 if to_device == "cuda" else torch.float32,
|
| 101 |
+
device_map="auto",
|
| 102 |
+
)
|
| 103 |
+
print("Fallback model loaded.")
|
| 104 |
|
| 105 |
+
def generate(self, messages: list[dict], max_new_tokens=512, **kwargs):
|
| 106 |
+
"""
|
| 107 |
+
Generate a response from the Fara/QwenVL model.
|
| 108 |
+
"""
|
| 109 |
text = self.processor.apply_chat_template(
|
| 110 |
messages, tokenize=False, add_generation_prompt=True
|
| 111 |
)
|
| 112 |
+
image_inputs, _ = process_vision_info(messages)
|
| 113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
inputs = self.processor(
|
| 115 |
text=[text],
|
| 116 |
images=image_inputs,
|
|
|
|
| 117 |
padding=True,
|
| 118 |
return_tensors="pt",
|
| 119 |
+
).to(self.model.device)
|
|
|
|
| 120 |
|
| 121 |
+
with torch.no_grad():
|
| 122 |
+
generated_ids = self.model.generate(**inputs, max_new_tokens=max_new_tokens, **kwargs)
|
| 123 |
|
| 124 |
+
# Trim input tokens to get only the generated part
|
| 125 |
generated_ids_trimmed = [
|
| 126 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 127 |
]
|
| 128 |
|
| 129 |
output_text = self.processor.batch_decode(
|
|
|
|
| 132 |
|
| 133 |
return output_text
|
| 134 |
|
| 135 |
+
# --- Initialize Global Model ---
|
| 136 |
+
model = FaraModelWrapper(
|
| 137 |
+
model_id=MODEL_ID,
|
| 138 |
+
to_device=DEVICE,
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
# -----------------------------------------------------------------------------
|
| 142 |
+
# HELPER FUNCTIONS (from app.py logic)
|
| 143 |
# -----------------------------------------------------------------------------
|
| 144 |
|
| 145 |
+
def get_navigation_prompt(task, image, previous_actions="None"):
|
| 146 |
+
"""
|
| 147 |
+
Constructs the prompt for the model.
|
| 148 |
+
"""
|
|
|
|
|
|
|
|
|
|
| 149 |
return [
|
| 150 |
{
|
| 151 |
"role": "system",
|
|
|
|
| 155 |
"role": "user",
|
| 156 |
"content": [
|
| 157 |
{"type": "image", "image": image},
|
| 158 |
+
{"type": "text", "text": f"Please generate the next move according to the UI screenshot, instruction and previous actions.\n\nInstruction: {task}\n\nPrevious actions:\n{previous_actions}"},
|
| 159 |
],
|
| 160 |
},
|
| 161 |
]
|
| 162 |
|
| 163 |
+
def array_to_image(image_array: np.ndarray) -> Image.Image:
|
| 164 |
+
if image_array is None:
|
| 165 |
+
raise ValueError("No image provided.")
|
| 166 |
+
return Image.fromarray(np.uint8(image_array))
|
| 167 |
+
|
| 168 |
def parse_actions_from_response(response: str) -> list[str]:
|
| 169 |
+
"""Parse actions from model response using <code>...</code> pattern."""
|
|
|
|
| 170 |
pattern = r"<code>\s*(.*?)\s*</code>"
|
| 171 |
matches = re.findall(pattern, response, re.DOTALL)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
return matches
|
| 173 |
|
| 174 |
def extract_coordinates_from_action(action_code: str) -> list[dict]:
|
| 175 |
+
"""Extract normalized (0-1) coordinates from action code for visualization."""
|
| 176 |
localization_actions = []
|
| 177 |
|
| 178 |
+
# Patterns for different action types expecting normalized floats
|
| 179 |
patterns = {
|
| 180 |
'click': r'click\((?:x=)?([0-9.]+)(?:,\s*(?:y=)?([0-9.]+))?\)',
|
| 181 |
'double_click': r'double_click\((?:x=)?([0-9.]+)(?:,\s*(?:y=)?([0-9.]+))?\)',
|
|
|
|
| 182 |
'drag': r'drag\(\[([0-9.]+),\s*([0-9.]+)\],\s*\[([0-9.]+),\s*([0-9.]+)\]\)'
|
| 183 |
}
|
| 184 |
|
|
|
|
| 186 |
matches = re.finditer(pattern, action_code)
|
| 187 |
for match in matches:
|
| 188 |
if action_type == 'drag':
|
| 189 |
+
from_x, from_y, to_x, to_y = map(float, match.groups())
|
| 190 |
+
localization_actions.append({'type': 'drag_from', 'x': from_x, 'y': from_y, 'action': action_type})
|
| 191 |
+
localization_actions.append({'type': 'drag_to', 'x': to_x, 'y': to_y, 'action': action_type})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
else:
|
| 193 |
+
x_val, y_val = map(float, match.groups())
|
| 194 |
+
localization_actions.append({'type': action_type, 'x': x_val, 'y': y_val, 'action': action_type})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
return localization_actions
|
| 197 |
|
| 198 |
def create_localized_image(original_image: Image.Image, coordinates: list[dict]) -> Optional[Image.Image]:
|
| 199 |
+
"""Draw markers on the image to visualize the predicted action."""
|
| 200 |
if not coordinates:
|
| 201 |
return None
|
| 202 |
|
|
|
|
| 205 |
width, height = img_copy.size
|
| 206 |
|
| 207 |
try:
|
| 208 |
+
font = ImageFont.truetype("Arial.ttf", 15)
|
| 209 |
+
except IOError:
|
| 210 |
font = ImageFont.load_default()
|
|
|
|
|
|
|
| 211 |
|
| 212 |
+
colors = {'click': 'red', 'double_click': 'blue', 'drag_from': 'orange', 'drag_to': 'purple'}
|
|
|
|
|
|
|
|
|
|
| 213 |
|
| 214 |
for i, coord in enumerate(coordinates):
|
| 215 |
+
pixel_x = int(coord['x'] * width)
|
| 216 |
+
pixel_y = int(coord['y'] * height)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
color = colors.get(coord['type'], 'red')
|
| 218 |
|
| 219 |
+
radius = 8
|
| 220 |
+
draw.ellipse([pixel_x - radius, pixel_y - radius, pixel_x + radius, pixel_y + radius], fill=color, outline='white', width=2)
|
|
|
|
|
|
|
| 221 |
|
| 222 |
+
label = f"{coord['type']}({coord['x']:.2f},{coord['y']:.2f})"
|
| 223 |
+
draw.text((pixel_x + 12, pixel_y - 12), label, fill=color, font=font, stroke_width=1, stroke_fill="white")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
|
|
|
|
| 225 |
if coord['type'] == 'drag_from' and i + 1 < len(coordinates) and coordinates[i + 1]['type'] == 'drag_to':
|
| 226 |
next_coord = coordinates[i + 1]
|
| 227 |
+
end_x = int(next_coord['x'] * width)
|
| 228 |
+
end_y = int(next_coord['y'] * height)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
draw.line([pixel_x, pixel_y, end_x, end_y], fill='orange', width=3)
|
| 230 |
|
| 231 |
return img_copy
|
| 232 |
|
| 233 |
# -----------------------------------------------------------------------------
|
| 234 |
+
# GRADIO CORE FUNCTION
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
# -----------------------------------------------------------------------------
|
| 236 |
|
| 237 |
+
@spaces.GPU(duration=60)
|
| 238 |
+
def predict_action(input_numpy_image: np.ndarray, task: str) -> Tuple[str, Optional[Image.Image]]:
|
| 239 |
+
"""
|
| 240 |
+
Main Gradio function: takes image and task, returns model output and visualized image.
|
| 241 |
+
"""
|
| 242 |
+
if model is None:
|
| 243 |
+
raise ValueError("Model not loaded")
|
| 244 |
|
| 245 |
input_pil_image = array_to_image(input_numpy_image)
|
| 246 |
|
| 247 |
+
# Generate prompt and get model prediction
|
| 248 |
+
prompt = get_navigation_prompt(task, input_pil_image)
|
| 249 |
+
model_response = model.generate(prompt, max_new_tokens=500)
|
| 250 |
+
print(f"Model Response: {model_response}")
|
| 251 |
|
| 252 |
+
# Parse the response to find action code
|
| 253 |
+
action_codes = parse_actions_from_response(model_response)
|
|
|
|
|
|
|
| 254 |
|
| 255 |
+
# Extract coordinates from all found actions for visualization
|
|
|
|
|
|
|
|
|
|
| 256 |
all_coordinates = []
|
| 257 |
+
for code in action_codes:
|
| 258 |
+
coordinates = extract_coordinates_from_action(code)
|
| 259 |
+
all_coordinates.extend(coordinates)
|
| 260 |
|
| 261 |
+
# Create the visualized image if coordinates were found
|
| 262 |
+
visualized_image = None
|
| 263 |
if all_coordinates:
|
| 264 |
+
visualized_image = create_localized_image(input_pil_image, all_coordinates)
|
| 265 |
+
print(f"Found {len(all_coordinates)} localization actions. Visualizing.")
|
| 266 |
+
else:
|
| 267 |
+
print("No localization actions found in the response.")
|
| 268 |
|
| 269 |
+
# Return the raw model response and the (possibly updated) image
|
| 270 |
+
return model_response, visualized_image if visualized_image else input_pil_image
|
| 271 |
|
| 272 |
+
# -----------------------------------------------------------------------------
|
| 273 |
+
# GRADIO UI LAYOUT
|
| 274 |
+
# -----------------------------------------------------------------------------
|
| 275 |
+
|
| 276 |
+
title = "Fara GUI Operator"
|
| 277 |
description = """
|
| 278 |
+
This is a demo of the **Fara Model** acting as a GUI Operator.
|
| 279 |
+
Provide a screenshot of a user interface and a task you want to perform. The model will output the thought process and the corresponding action code, visualizing clicks and drags directly on the image.
|
| 280 |
+
This version does not execute the actions; it only predicts and visualizes them.
|
| 281 |
"""
|
| 282 |
|
| 283 |
+
# Load Example Data
|
| 284 |
+
try:
|
| 285 |
+
example_1_image = Image.open("./assets/google.png")
|
| 286 |
+
example_1_task = "Search for the name of the current UK Prime Minister."
|
| 287 |
+
example_2_image = Image.open("./assets/huggingface.png")
|
| 288 |
+
example_2_task = "Find the most trending model."
|
| 289 |
+
examples = [[example_1_image, example_1_task], [example_2_image, example_2_task]]
|
| 290 |
+
except FileNotFoundError:
|
| 291 |
+
print("Warning: Example assets not found. The demo will run without examples.")
|
| 292 |
+
examples = []
|
| 293 |
+
|
| 294 |
+
|
| 295 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 296 |
gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>")
|
| 297 |
gr.Markdown(description)
|
| 298 |
|
|
|
|
|
|
|
|
|
|
| 299 |
with gr.Row():
|
| 300 |
with gr.Column(scale=1):
|
| 301 |
+
input_image_component = gr.Image(label="UI Screenshot", type="numpy", height=500)
|
| 302 |
+
task_component = gr.Textbox(
|
| 303 |
+
label="Task",
|
| 304 |
+
placeholder="e.g., Search for 'Fara Model'",
|
| 305 |
+
info="Type the task you want the model to perform on this UI.",
|
| 306 |
)
|
| 307 |
+
submit_button = gr.Button("Predict Action", variant="primary")
|
| 308 |
|
| 309 |
with gr.Column(scale=1):
|
| 310 |
+
output_text_component = gr.Textbox(label="Model Full Output", lines=10, interactive=False)
|
| 311 |
+
# The input image component will be updated with the visualized output
|
| 312 |
+
gr.Markdown("### Visualized Action")
|
| 313 |
+
gr.Markdown("The image on the left will update with markers for clicks/drags.")
|
| 314 |
+
|
| 315 |
+
submit_button.click(
|
| 316 |
+
predict_action,
|
| 317 |
+
[input_image_component, task_component],
|
| 318 |
+
[output_text_component, input_image_component]
|
| 319 |
)
|
| 320 |
|
| 321 |
+
if examples:
|
| 322 |
+
gr.Examples(
|
| 323 |
+
examples=examples,
|
| 324 |
+
inputs=[input_image_component, task_component],
|
| 325 |
+
outputs=[output_text_component, input_image_component],
|
| 326 |
+
fn=predict_action,
|
| 327 |
+
cache_examples=True,
|
| 328 |
+
)
|
| 329 |
|
| 330 |
if __name__ == "__main__":
|
| 331 |
+
demo.queue().launch(debug=True, share=True)
|