Update app.py
Browse files
app.py
CHANGED
|
@@ -19,24 +19,27 @@ model = ChatOpenAI(
|
|
| 19 |
# β
Initialize HuggingFace Embeddings
|
| 20 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 21 |
|
| 22 |
-
# β
Initialize Chroma Vector Store
|
| 23 |
vector_store = Chroma(
|
| 24 |
collection_name="chat_collection", # Specify the collection name
|
| 25 |
embedding_function=embeddings,
|
| 26 |
-
persist_directory="./
|
| 27 |
)
|
| 28 |
|
| 29 |
# β
Step 1: Helper Functions for Chat Memory
|
| 30 |
def get_chat_history(user_id):
|
| 31 |
"""Fetches stored messages for a given user from the vector store."""
|
| 32 |
-
# Use Chroma's retriever to fetch documents filtered by user_id
|
| 33 |
retriever = vector_store.as_retriever(
|
| 34 |
-
search_type="mmr",
|
| 35 |
-
search_kwargs={"k": 100, "fetch_k": 100}
|
| 36 |
)
|
| 37 |
|
| 38 |
-
#
|
| 39 |
results = retriever.invoke("Chat history", filter={"user_id": user_id})
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
# Extract the page content (chat messages) from the results
|
| 41 |
user_history = [doc.page_content for doc in results]
|
| 42 |
return "\n".join(user_history) if user_history else ""
|
|
@@ -52,24 +55,27 @@ def generate_response(username, user_input):
|
|
| 52 |
"""Generates a chatbot response using GPT-4 and stores chat history."""
|
| 53 |
user_id = username.lower().strip()
|
| 54 |
history = get_chat_history(user_id)
|
| 55 |
-
# Append the latest user input to the conversation history
|
| 56 |
messages = [{"role": "system", "content": "You are a helpful AI assistant. Please provide answer in 20 words only"}]
|
|
|
|
| 57 |
if history:
|
| 58 |
messages.append({"role": "user", "content": f"Chat history:\n{history}"})
|
| 59 |
-
|
| 60 |
messages.append({"role": "user", "content": user_input})
|
| 61 |
-
|
| 62 |
-
|
|
|
|
| 63 |
bot_response = response.content
|
|
|
|
| 64 |
# Store the conversation for future reference
|
| 65 |
store_chat_message(user_id, user_input, bot_response)
|
|
|
|
| 66 |
# Return the entire conversation including the user's input and bot's response
|
| 67 |
return f"{history}\nUser: {user_input}\nBot: {bot_response}"
|
| 68 |
|
| 69 |
# β
Step 3: Gradio UI with User Dropdown
|
| 70 |
with gr.Blocks() as demo:
|
| 71 |
gr.Markdown("# π₯ Multi-User Chatbot with GPT-4 and Memory (ChromaDB)")
|
| 72 |
-
|
| 73 |
# Dropdown for selecting user
|
| 74 |
username_input = gr.Dropdown(
|
| 75 |
label="Select User",
|
|
|
|
| 19 |
# β
Initialize HuggingFace Embeddings
|
| 20 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 21 |
|
| 22 |
+
# β
Initialize Chroma Vector Store
|
| 23 |
vector_store = Chroma(
|
| 24 |
collection_name="chat_collection", # Specify the collection name
|
| 25 |
embedding_function=embeddings,
|
| 26 |
+
persist_directory="./chroma_db", # Directory to store data locally
|
| 27 |
)
|
| 28 |
|
| 29 |
# β
Step 1: Helper Functions for Chat Memory
|
| 30 |
def get_chat_history(user_id):
|
| 31 |
"""Fetches stored messages for a given user from the vector store."""
|
|
|
|
| 32 |
retriever = vector_store.as_retriever(
|
| 33 |
+
search_type="mmr",
|
| 34 |
+
search_kwargs={"k": 100, "fetch_k": 100}
|
| 35 |
)
|
| 36 |
|
| 37 |
+
# Ensure filter is applied to user_id correctly
|
| 38 |
results = retriever.invoke("Chat history", filter={"user_id": user_id})
|
| 39 |
+
|
| 40 |
+
if not results: # If no results, return empty string
|
| 41 |
+
return ""
|
| 42 |
+
|
| 43 |
# Extract the page content (chat messages) from the results
|
| 44 |
user_history = [doc.page_content for doc in results]
|
| 45 |
return "\n".join(user_history) if user_history else ""
|
|
|
|
| 55 |
"""Generates a chatbot response using GPT-4 and stores chat history."""
|
| 56 |
user_id = username.lower().strip()
|
| 57 |
history = get_chat_history(user_id)
|
|
|
|
| 58 |
messages = [{"role": "system", "content": "You are a helpful AI assistant. Please provide answer in 20 words only"}]
|
| 59 |
+
|
| 60 |
if history:
|
| 61 |
messages.append({"role": "user", "content": f"Chat history:\n{history}"})
|
| 62 |
+
|
| 63 |
messages.append({"role": "user", "content": user_input})
|
| 64 |
+
|
| 65 |
+
# Generate the response
|
| 66 |
+
response = model.invoke(messages)
|
| 67 |
bot_response = response.content
|
| 68 |
+
|
| 69 |
# Store the conversation for future reference
|
| 70 |
store_chat_message(user_id, user_input, bot_response)
|
| 71 |
+
|
| 72 |
# Return the entire conversation including the user's input and bot's response
|
| 73 |
return f"{history}\nUser: {user_input}\nBot: {bot_response}"
|
| 74 |
|
| 75 |
# β
Step 3: Gradio UI with User Dropdown
|
| 76 |
with gr.Blocks() as demo:
|
| 77 |
gr.Markdown("# π₯ Multi-User Chatbot with GPT-4 and Memory (ChromaDB)")
|
| 78 |
+
|
| 79 |
# Dropdown for selecting user
|
| 80 |
username_input = gr.Dropdown(
|
| 81 |
label="Select User",
|