Spaces:
Sleeping
Sleeping
Commit
·
bbab825
1
Parent(s):
210a1a2
Delete example.py
Browse files- example.py +0 -74
example.py
DELETED
|
@@ -1,74 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import matplotlib.pyplot as plt
|
| 3 |
-
import numpy as np
|
| 4 |
-
import librosa
|
| 5 |
-
import panns_inference
|
| 6 |
-
from panns_inference import AudioTagging, SoundEventDetection, labels
|
| 7 |
-
|
| 8 |
-
def print_audio_tagging_result(clipwise_output):
|
| 9 |
-
"""Visualization of audio tagging result.
|
| 10 |
-
|
| 11 |
-
Args:
|
| 12 |
-
clipwise_output: (classes_num,)
|
| 13 |
-
"""
|
| 14 |
-
sorted_indexes = np.argsort(clipwise_output)[::-1]
|
| 15 |
-
|
| 16 |
-
# Print audio tagging top probabilities
|
| 17 |
-
for k in range(10):
|
| 18 |
-
print('{}: {:.3f}'.format(np.array(labels)[sorted_indexes[k]],
|
| 19 |
-
clipwise_output[sorted_indexes[k]]))
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
def plot_sound_event_detection_result(framewise_output):
|
| 23 |
-
"""Visualization of sound event detection result.
|
| 24 |
-
|
| 25 |
-
Args:
|
| 26 |
-
framewise_output: (time_steps, classes_num)
|
| 27 |
-
"""
|
| 28 |
-
out_fig_path = 'results/sed_result.png'
|
| 29 |
-
os.makedirs(os.path.dirname(out_fig_path), exist_ok=True)
|
| 30 |
-
|
| 31 |
-
classwise_output = np.max(framewise_output, axis=0) # (classes_num,)
|
| 32 |
-
|
| 33 |
-
idxes = np.argsort(classwise_output)[::-1]
|
| 34 |
-
idxes = idxes[0:5]
|
| 35 |
-
|
| 36 |
-
ix_to_lb = {i : label for i, label in enumerate(labels)}
|
| 37 |
-
lines = []
|
| 38 |
-
for idx in idxes:
|
| 39 |
-
line, = plt.plot(framewise_output[:, idx], label=ix_to_lb[idx])
|
| 40 |
-
lines.append(line)
|
| 41 |
-
|
| 42 |
-
plt.legend(handles=lines)
|
| 43 |
-
plt.xlabel('Frames')
|
| 44 |
-
plt.ylabel('Probability')
|
| 45 |
-
plt.ylim(0, 1.)
|
| 46 |
-
plt.savefig(out_fig_path)
|
| 47 |
-
print('Save fig to {}'.format(out_fig_path))
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
if __name__ == '__main__':
|
| 51 |
-
"""Example of using panns_inferece for audio tagging and sound evetn detection.
|
| 52 |
-
"""
|
| 53 |
-
device = 'cpu' # 'cuda' | 'cpu'
|
| 54 |
-
audio_path = 'resources/R9_ZSCveAHg_7s.wav'
|
| 55 |
-
(audio, _) = librosa.core.load(audio_path, sr=32000, mono=True)
|
| 56 |
-
#print(audio)
|
| 57 |
-
plt.plot(audio)
|
| 58 |
-
plt.savefig('sample.png')
|
| 59 |
-
audio = audio[None, :] # (batch_size, segment_samples)
|
| 60 |
-
#print(audio)
|
| 61 |
-
|
| 62 |
-
print('------ Audio tagging ------')
|
| 63 |
-
at = AudioTagging(checkpoint_path=None, device=device)
|
| 64 |
-
(clipwise_output, embedding) = at.inference(audio)
|
| 65 |
-
"""clipwise_output: (batch_size, classes_num), embedding: (batch_size, embedding_size)"""
|
| 66 |
-
|
| 67 |
-
print_audio_tagging_result(clipwise_output[0])
|
| 68 |
-
|
| 69 |
-
print('------ Sound event detection ------')
|
| 70 |
-
sed = SoundEventDetection(checkpoint_path=None, device=device)
|
| 71 |
-
framewise_output = sed.inference(audio)
|
| 72 |
-
"""(batch_size, time_steps, classes_num)"""
|
| 73 |
-
|
| 74 |
-
plot_sound_event_detection_result(framewise_output[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|